

DISCOVER and TRANSACT

It's What We Do

A modern approach to accelerating
wealth creation in the mining sector

January 2026

This presentation includes certain statements that may be deemed "forward-looking-statements". All statements in this presentation, other than statements of historical facts are forward-looking-statements. Although the Company believes the expectations expressed in such forward-looking statements are based on reasonable assumptions, such statements are not guarantees of future performance and actual results or developments may differ materially from those in the forward-looking statements. Assumptions used by the Company to develop forward-looking statements include the following: the Company's projects will obtain all required environmental and other permits, and all land use and other licenses, studies and exploration of the Company's projects will continue to be positive, and no geological or technical problems will occur. Though the Company believes the expectations expressed in its forward-looking-statements are based on reasonable assumptions, such statements are subject to future events and third party discretion such as regulatory personnel. Factors that could cause actual results to differ materially from those in forward-looking statements include variations in market prices of commodities, including metals, continuity of mineralization and exploration success and potential environmental issues or liabilities associated with exploration, development and mining activities, uncertainties related to the ability to obtain necessary permits, licenses and tenure and delays due to third party opposition, changes in and the effect of government policies regarding mining and natural resource exploration and exploitation, and exploration and development of properties located within Aboriginal groups asserted territories that may affect or be perceived to affect asserted aboriginal rights and title, which may cause permitting delays or opposition by Aboriginal groups, continued availability of capital and financing, and general economic, market or business conditions and the future demand for copper, gold and silver. Investors are cautioned that any such statements are not guarantees of future performance and actual results or developments may differ materially from those projected in the forward-looking statements. For more information on the Company, and the risks and uncertainties connected with its business, investors should review the Company's home jurisdiction filings at www.sedarplus.ca and its filings with the United States Securities and Exchange Commission at www.sec.gov

Qualified Person

Technical information contained in this presentation has been reviewed and approved by Farshad Shirmohammad, P.Geo. (Farshad Geosciences Corporation), a Qualified Person as defined under National Instrument 43-101, and who is not independent of Quartz Mountain Resources Ltd.

Quartz is committed to discovering and transacting critical and essential mining assets while following **responsible mineral development principles**

Our Community

We will engage with all stakeholders on the basis of respect, fairness, transparency, and meaningful consultation and participation.

Our Environment

We will operate our projects in a manner which provides benefits to local First Nations and communities. Local contractors are sourced whenever possible.

Our Responsibility

We will operate in a responsible manner so that our activities protect the health and safety of our employees and contractors, and of the communities in which we work.

Quartz Value Proposition

Experienced mine finders creating shareholder wealth by making important discoveries and transacting high value gold, silver and copper projects.

Accelerating two important new discoveries in British Columbia with delineation drilling towards transactions: Maestro and Jake

The high risk, grass roots exploration stage is complete at both high value, high demand discoveries

Strong leadership team with more than 35 years of proven discovery and transaction experience

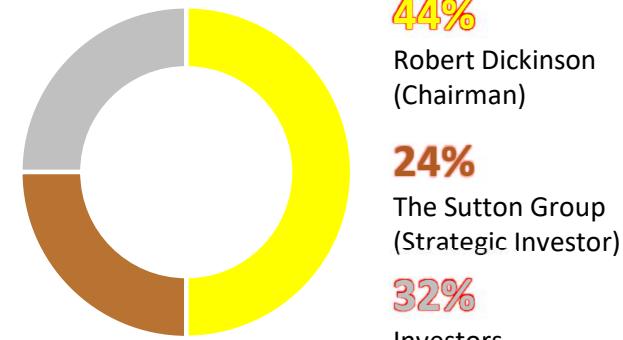
Funded and backed by a strong founding shareholder and a strategic investor

Multiple near-term catalysts, based on year-round drill program accessibility at Maestro

Surging gold, silver and copper prices are forecast going forward due to significant global demand/supply imbalances



Capital Structure

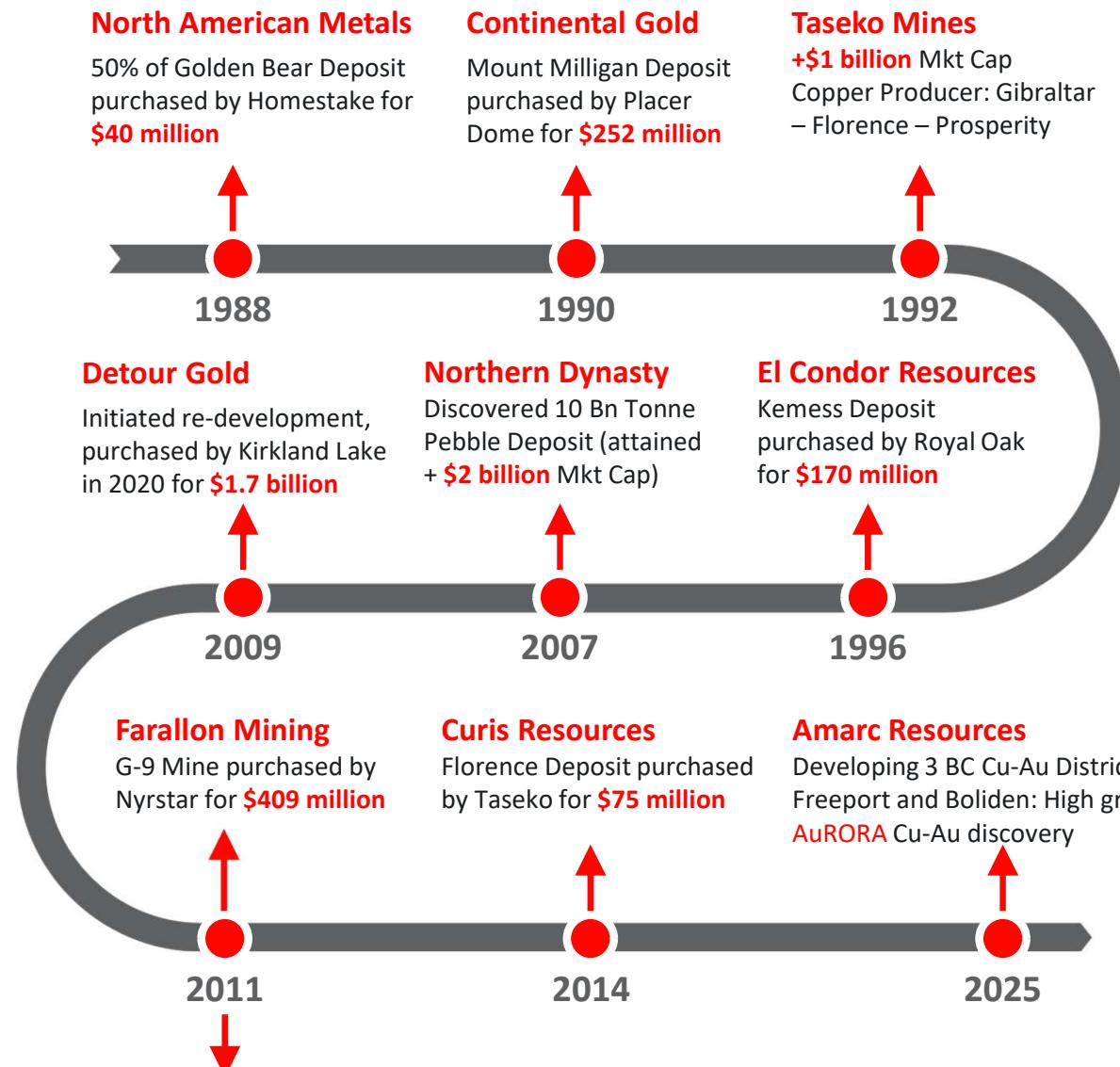

Shares Outstanding **72,307,338** Warrants and Options **7,705,593** Fully Diluted Shares **80,012,931**

Cash (\$)
3,500,000

QZM Share Price Performance

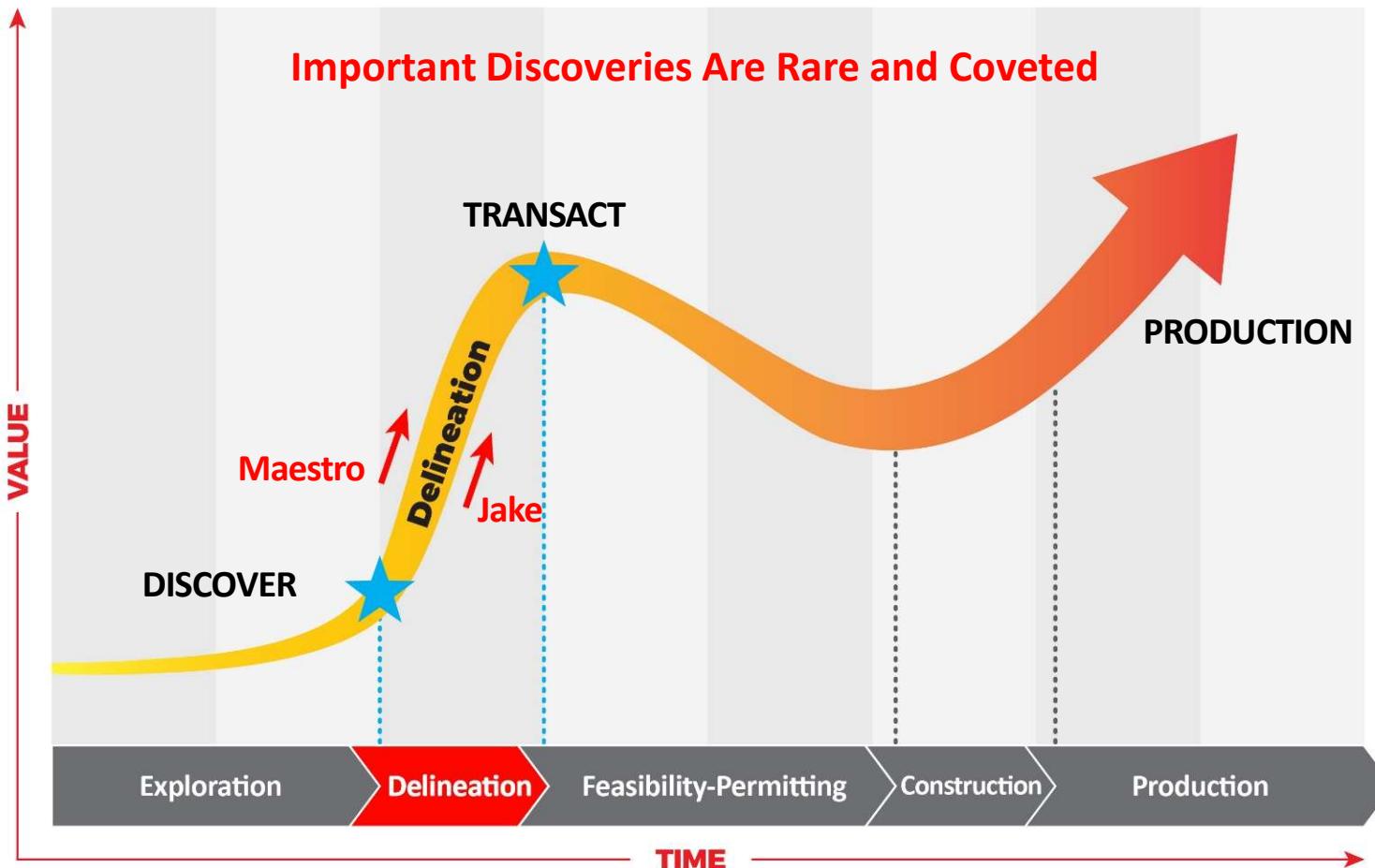
Key Shareholders

Management Team

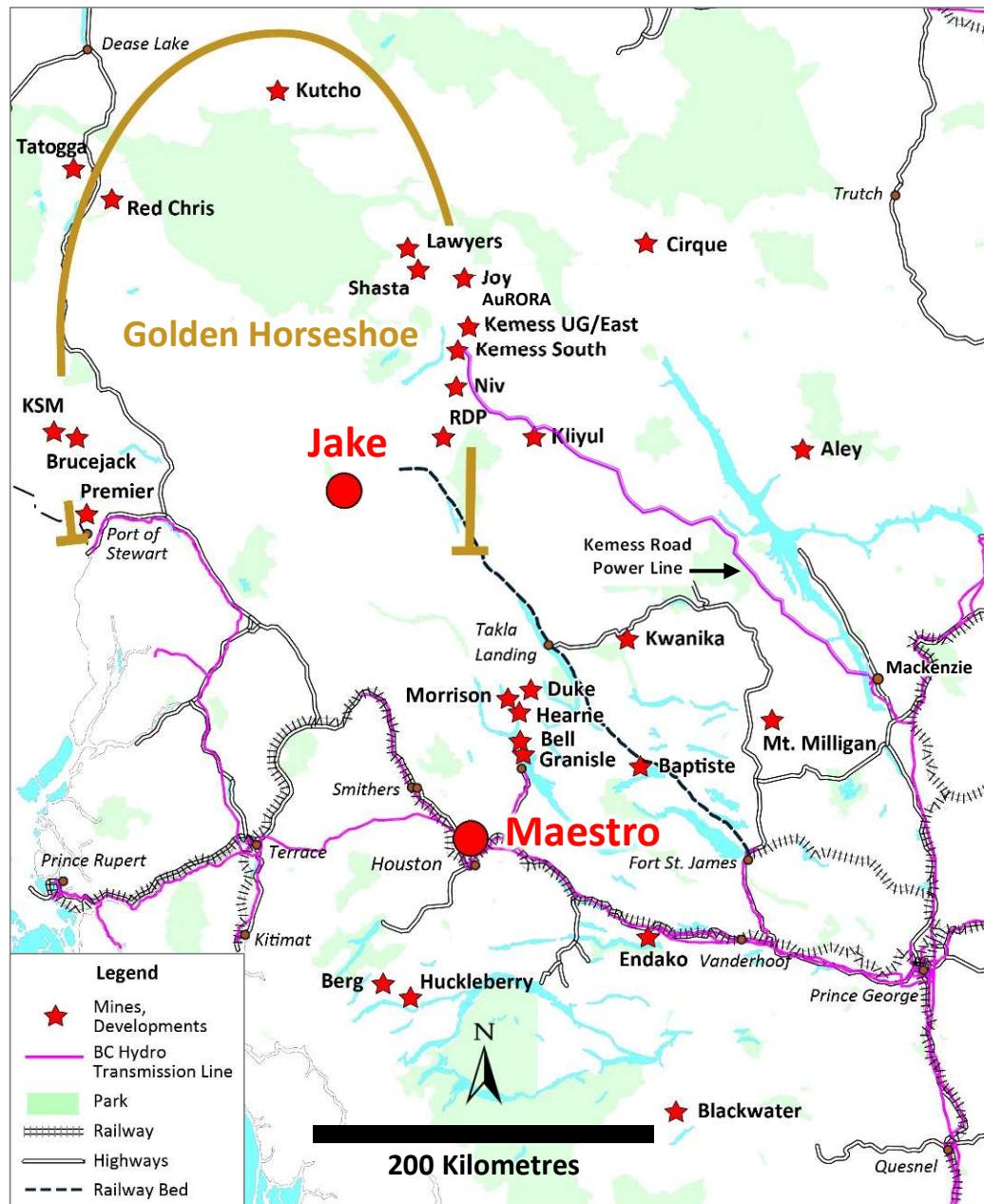

Robert Dickinson, *Chairman*
Trevor Thomas, LLB, *CEO*
Farshad Shirmohammad, P.Geo., *Advisor*
Sebastian Tang, CA, *CFO*

Board of Directors

Robert Dickinson, *Chairman*
Michael Clark, *Director*
Matthew Dickinson, *Director*
Al Basile, *Director*
Trevor Thomas, *Director*



HDI Group Has 35 Years of Discoveries and Transactions


Bob Dickinson, Chairman
Quartz Mountain Resources Ltd.

Typical Value Creation Lifecycle of a Mining Company

- Maestro and Jake – two new high value mineral discoveries
- Maestro (gold-silver) is the current focus of drill delineation programs, while Jake (copper-gold) is standing by, next in the pipeline
- Delineation drilling will accelerate both discoveries towards wealth creating transactions

British Columbia is a Leading Jurisdiction for Resource Development

HDI's BC Success Stories

Maestro and Jake are Located in the Heartland of the BC Mining Industry

Two New 100% Owned BC Discoveries

Building Value Through Active Delineation Drilling

Maestro Discovery

Au

Ag

102m of 2.22 g/t Au & 104 g/t Ag

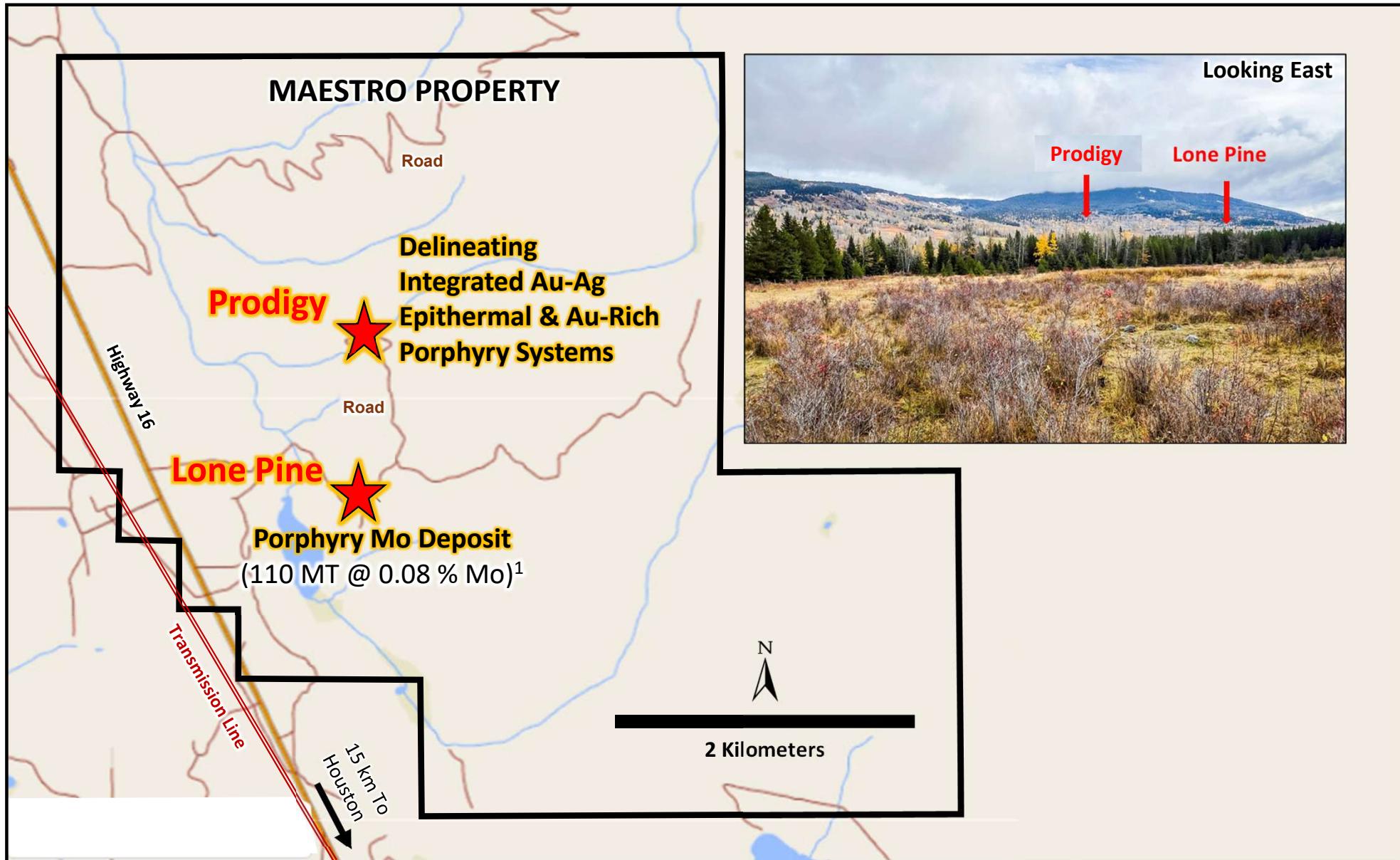
- New high-grade Au-Ag lodes discovered by Phase 1, two-hole scout drill program
- Age and geological features similar to Blackwater Mine - Artemis Gold¹ (\$8 + billion Mkt cap) near Vanderhoof
- **Successfully completed Phases 2 & 3 delineation drilling programs in 2025**
- **Multi-phase drill programs planned for 2026**
- Fully permitted with 39 drill sites approved

FLAGSHIP PROJECT

Jake Discovery

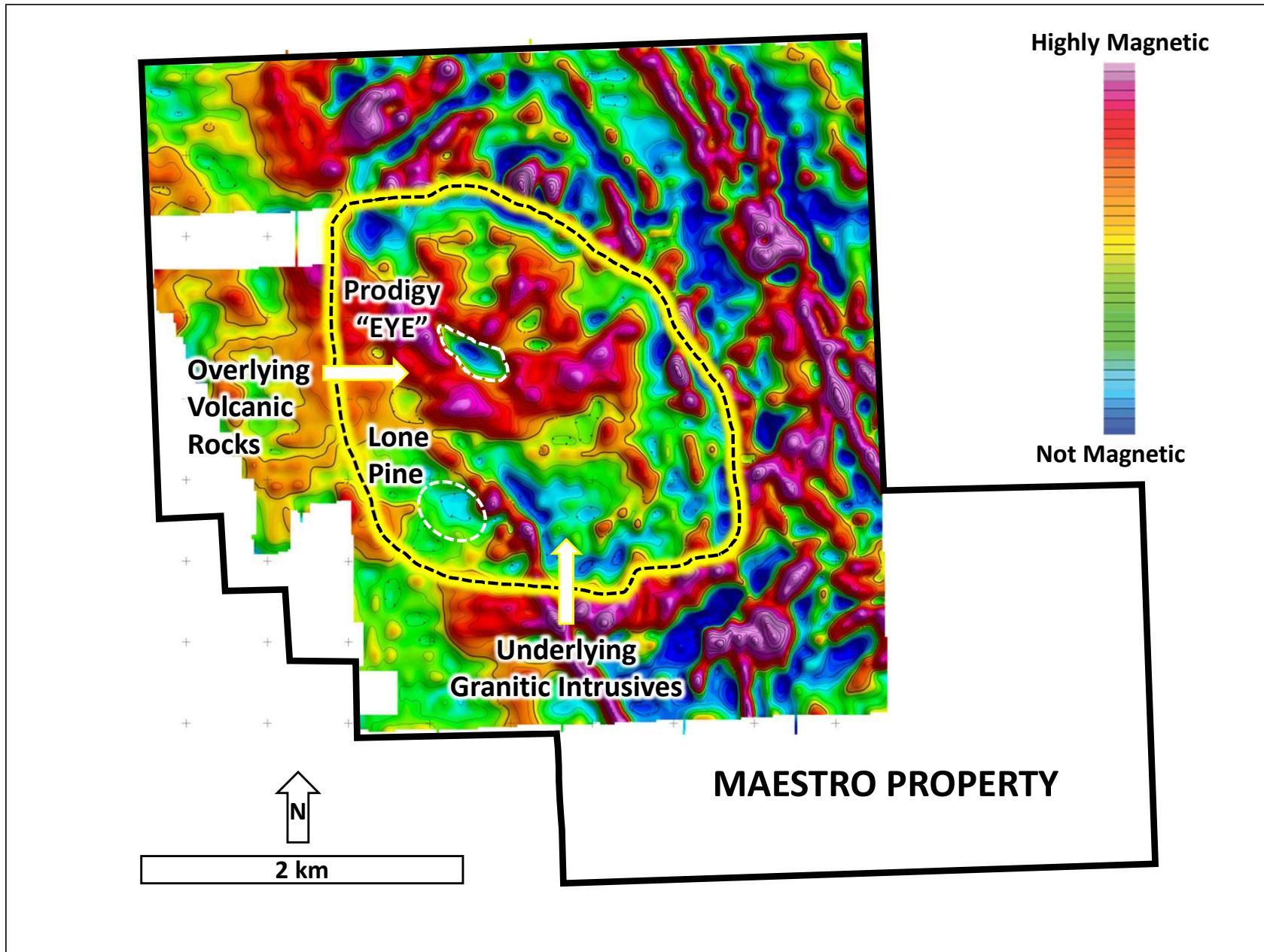
Cu

Au


Ag

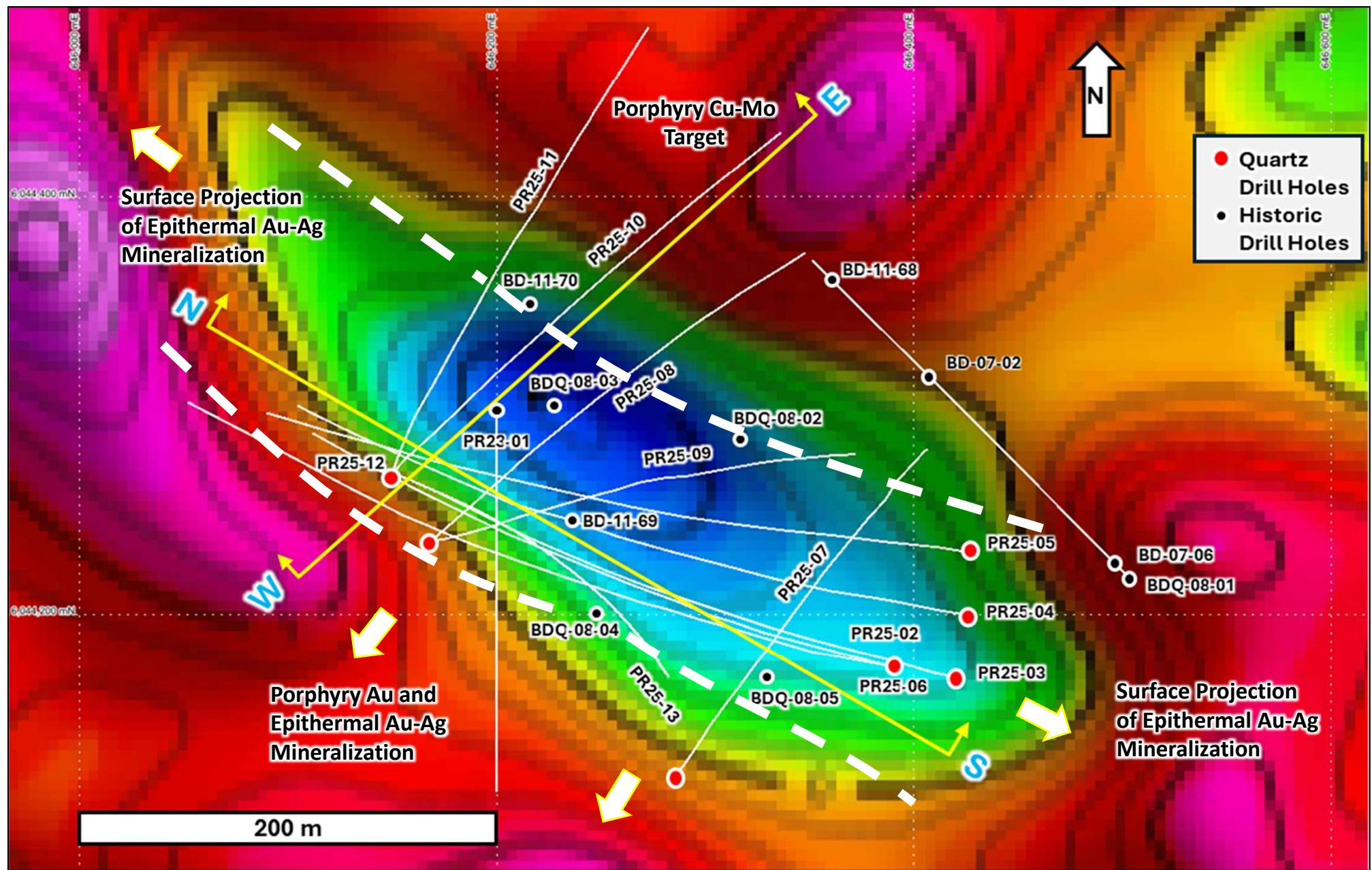
74m of 0.30% Cu, 0.12 g/t Au, 2.5 g/t Ag

- New Cu-Au-Ag porphyry discovered by seven-hole scout drill program - Entire new potential porphyry copper-gold district acquired
- Geological features similar to high grade Bell Cu-Au Mine (72 Mt mined @ Cu 0.46%, Au 0.23 g/t)² near Smithers
- Fully permitted with 47 drill sites approved
- Next Steps: Delineation drill program next in the pipeline


NEXT PROJECT

Delineating Epithermal Gold-Silver Mineralization Linked to Underlying Gold-Rich Porphyry at Prodigy

Modern Airborne Magnetic Survey Unveils Geological Features to Focus Discovery Drilling

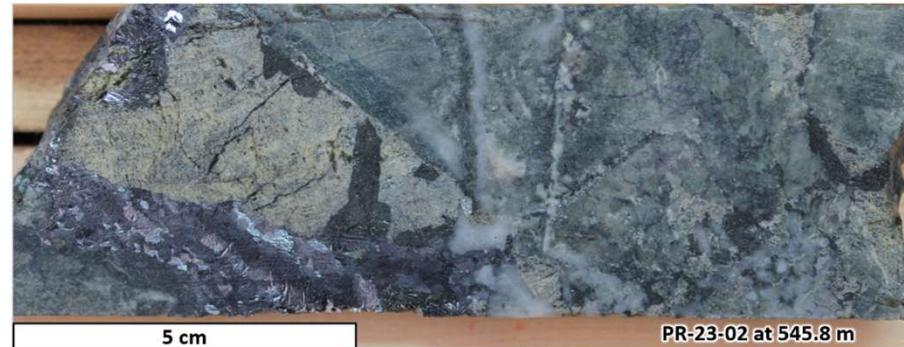
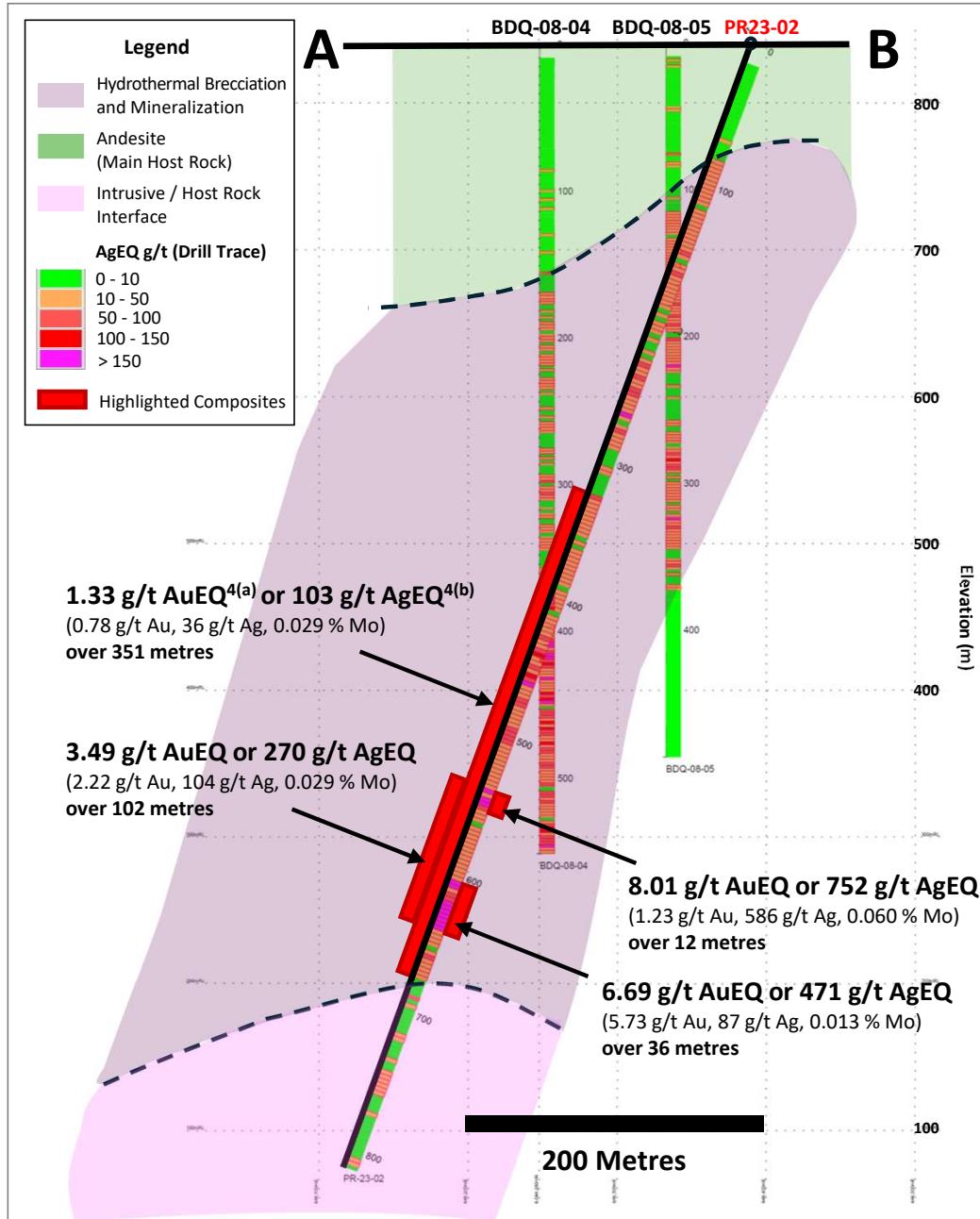

HDI QUARTZ

**Completed Three Sequential Drill Programs at Prodigy “Eye”
Total 8,346 Meters Across 13 holes**

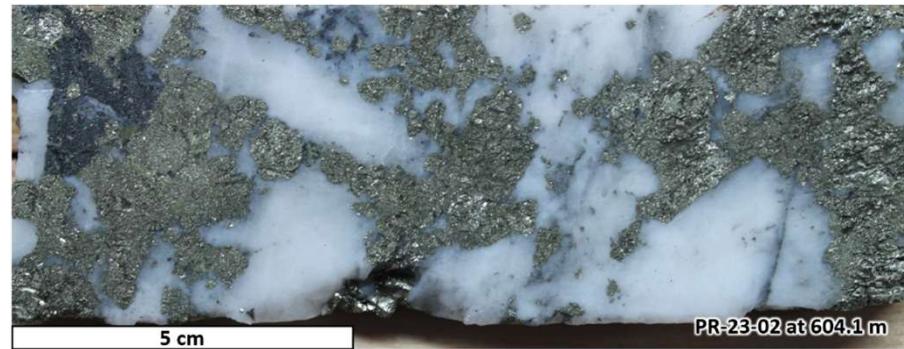
- Two-hole, Phase 1 drill program discovered new high-grade lodes and bulk tonnage Au-Ag mineralization at Prodigy Target
- Four-hole, Phase 2 drill program commenced the delineation of the Prodigy Epithermal Au-Ag discovery
- Seven-hole, Phase 3 drilling program intersected three distinct but closely integrated classic mineralization types at Prodigy
 - 1) Overlying Epithermal Au-Ag-Mo-Cu System
 - 2) Unique Au-Rich Porphyry Below, and
 - 3) Porphyry Cu-Mo Target (adjacent to Prodigy Au-Ag system)
- **Drill hole PR25-13, the last hole of Phase 3, intersected broad intervals of precious metals mineralization from shallow depth, and below that, the hole cut a gold-rich porphyry continuously over some 315 meters**
- Detailed follow-up Induced Polarization (IP) surveying indicates that Prodigy lies within a very extensive, continuous, and largely untested sulphide system.
- Quartz plans to mobilize multi-phase drill programs in 2026 to continue further delineation of Prodigy and drilling of the large mineral system identified by IP survey

Note 1. Historical estimate, P&E Mining Consultant Inc. (2011)

Selected Key Drill Holes¹

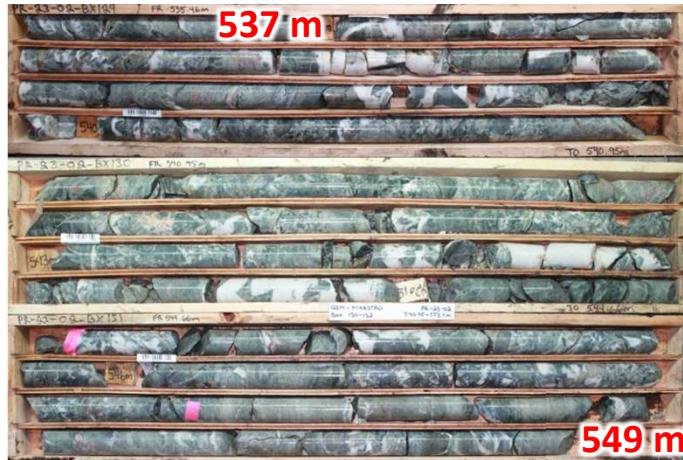


Drilling Has Intersected Integrated Precious Metal Deposit Types

Drill Hole Number	From (m)	Int. (m)	AuEQ4 ^(a) (g/t)	Au (g/t)	Ag (g/t)	Mo (%)	Deposit Target Style
PR25-13	122	123	0.79	0.23	32	0.012	Epithermal (Shallow)
PR25-03	157	101	0.77	0.29	23	0.020	
BDQ-08-02	197	206	0.96	0.10	46	0.035	
BDQ-08-03	67	100	0.80	0.16	35	0.021	
PR23-02	603	36	6.93	5.73	87	0.013	Epithermal (High-Grade)
BD-11-69	134	71	3.07	0.35	185	0.025	
PR23-02	324	435	1.22	0.65	30	0.025	Gold-Rich Porphyry
PR25-13	369	316	0.73	0.39	14	0.018	
PR25-05	414	257	0.69	0.29	8	0.044	
BDQ-08-04	293	258	0.81	0.43	13	0.026	


Note 1. See Appendices for Complete Assay Results and Note 4^a for Gold Equivalent (AuEQ) methodology.

31.1 Grams = 1 Ounce

Hole PR23-02 Intercepted High Grade Gold-Silver Lodes Within an Extensive Precious Metals System at Prodigy



Core sample from a 3m-interval, returning 580 g/t Ag, 0.56 g/t Au and 0.073% Mo

Core sample from a 3m-interval, returning 529 g/t Ag, 14.95 g/t Au and 0.009% Mo

Note 4^a and 4^b. See Appendices for Assay Results and Note 4^(a) for Gold Equivalent (AuEQ) and 4^(b) for Silver Equivalent (AgEQ) methodology.

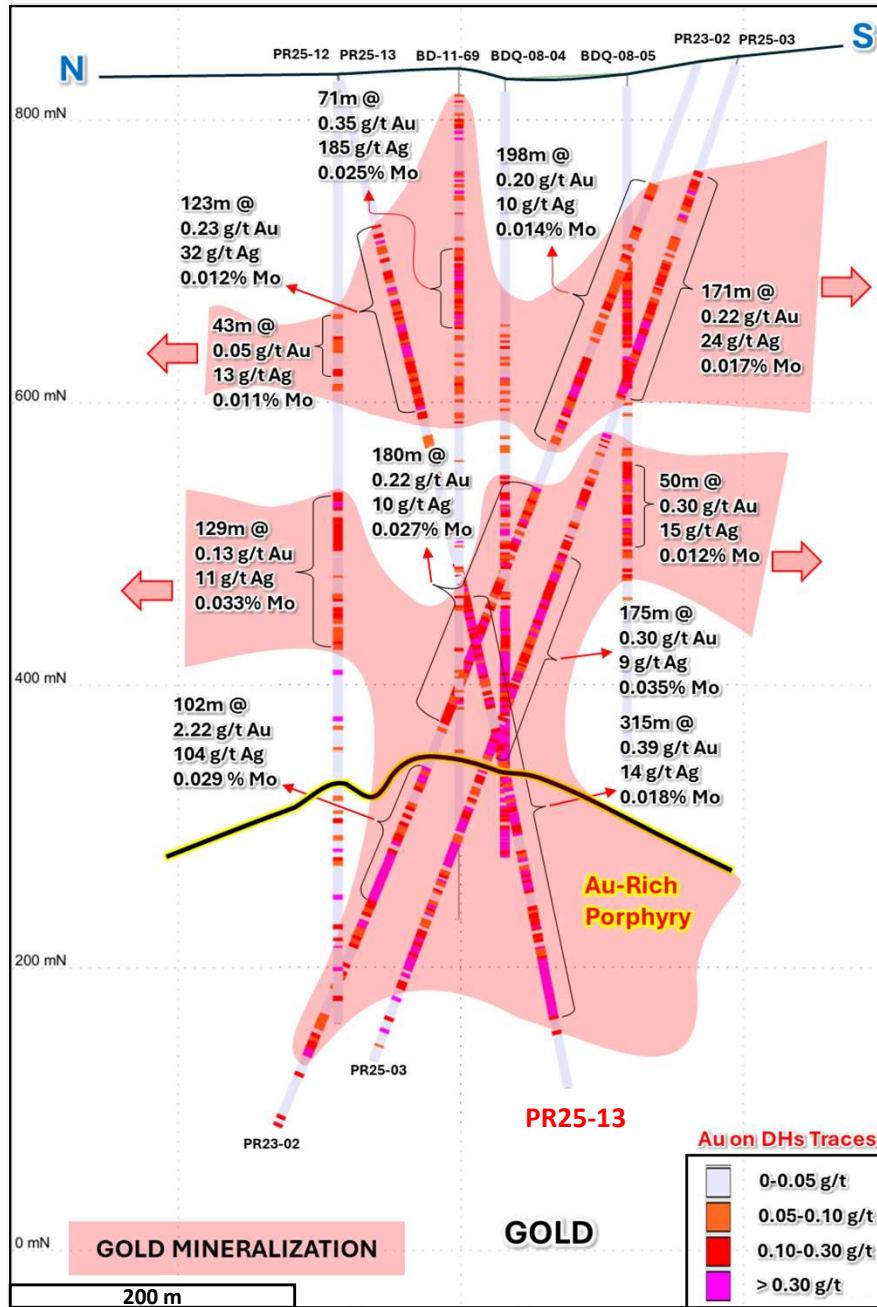
High Grade *Silver-Rich* Lode

586 g/t Ag, 1.23 g/t Au, 0.060 % Mo

8.01 g/t AuEQ^{4(a)} Over 12 meters

(537 – 549 m)

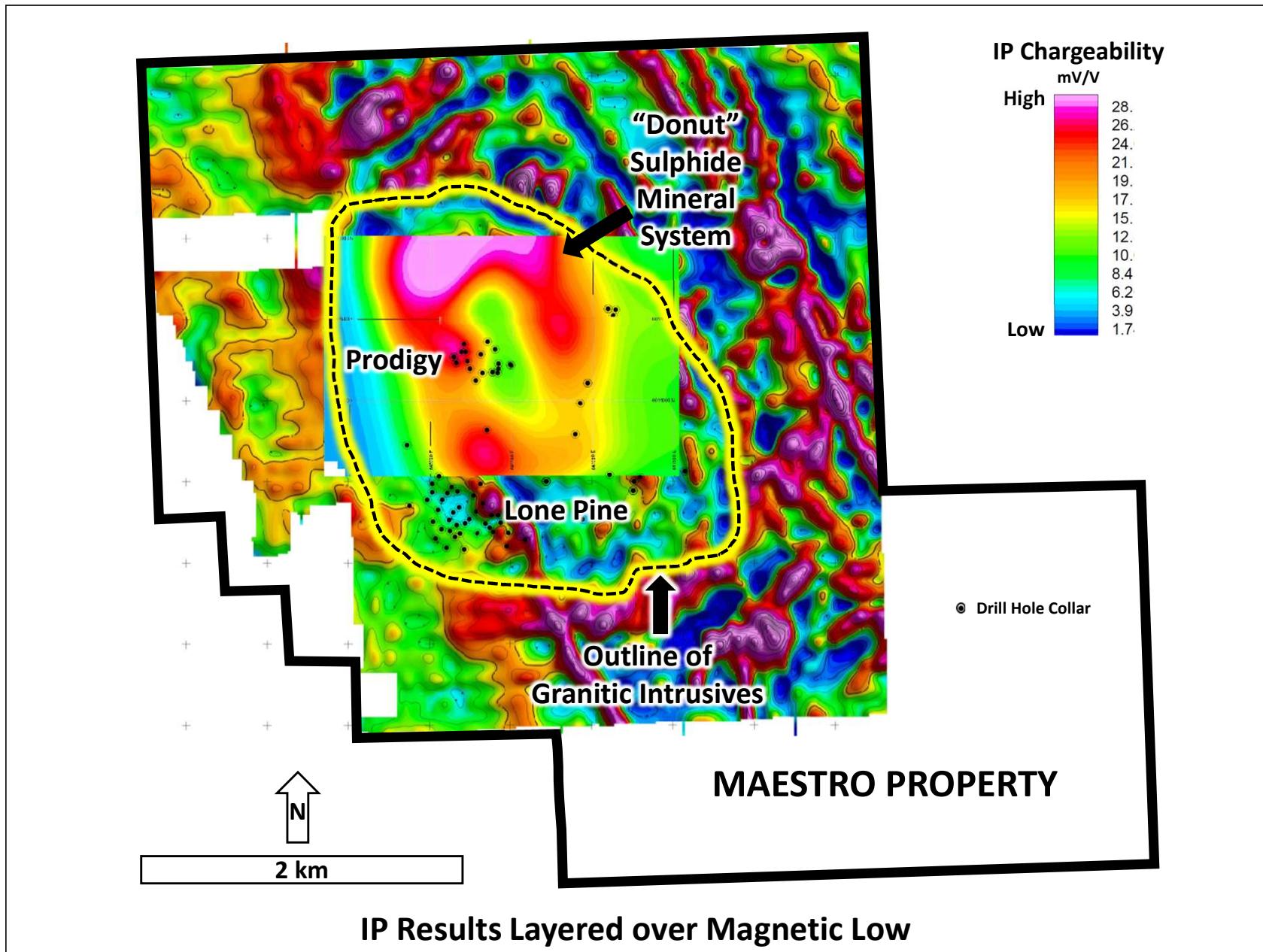
High Grade *Gold-Rich* Lode


5.73 g/t Au, 87 g/t Ag, 0.013 % Mo

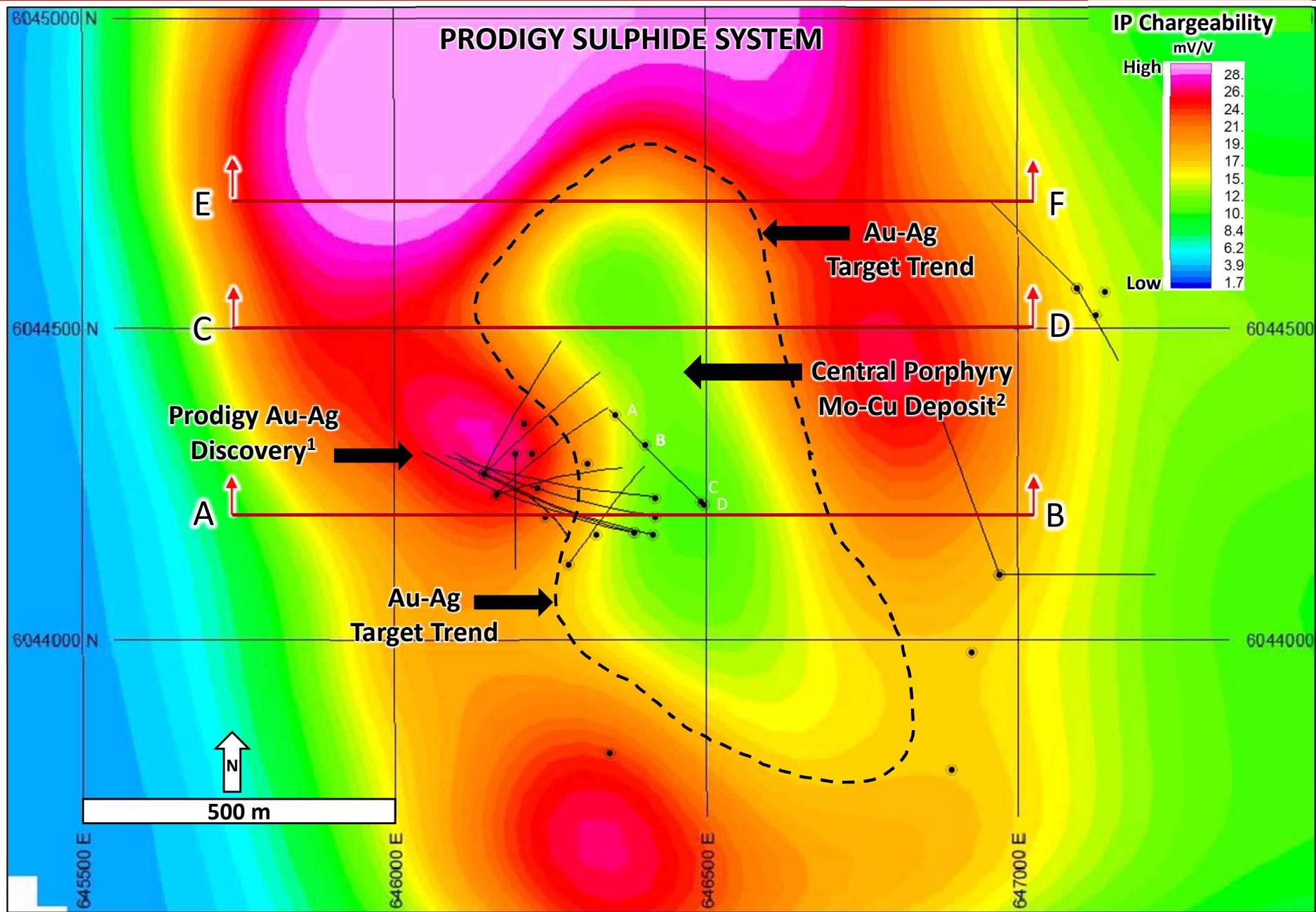
6.69 g/t AuEQ^{4(a)} Over 36 meters

(603 – 639 m)

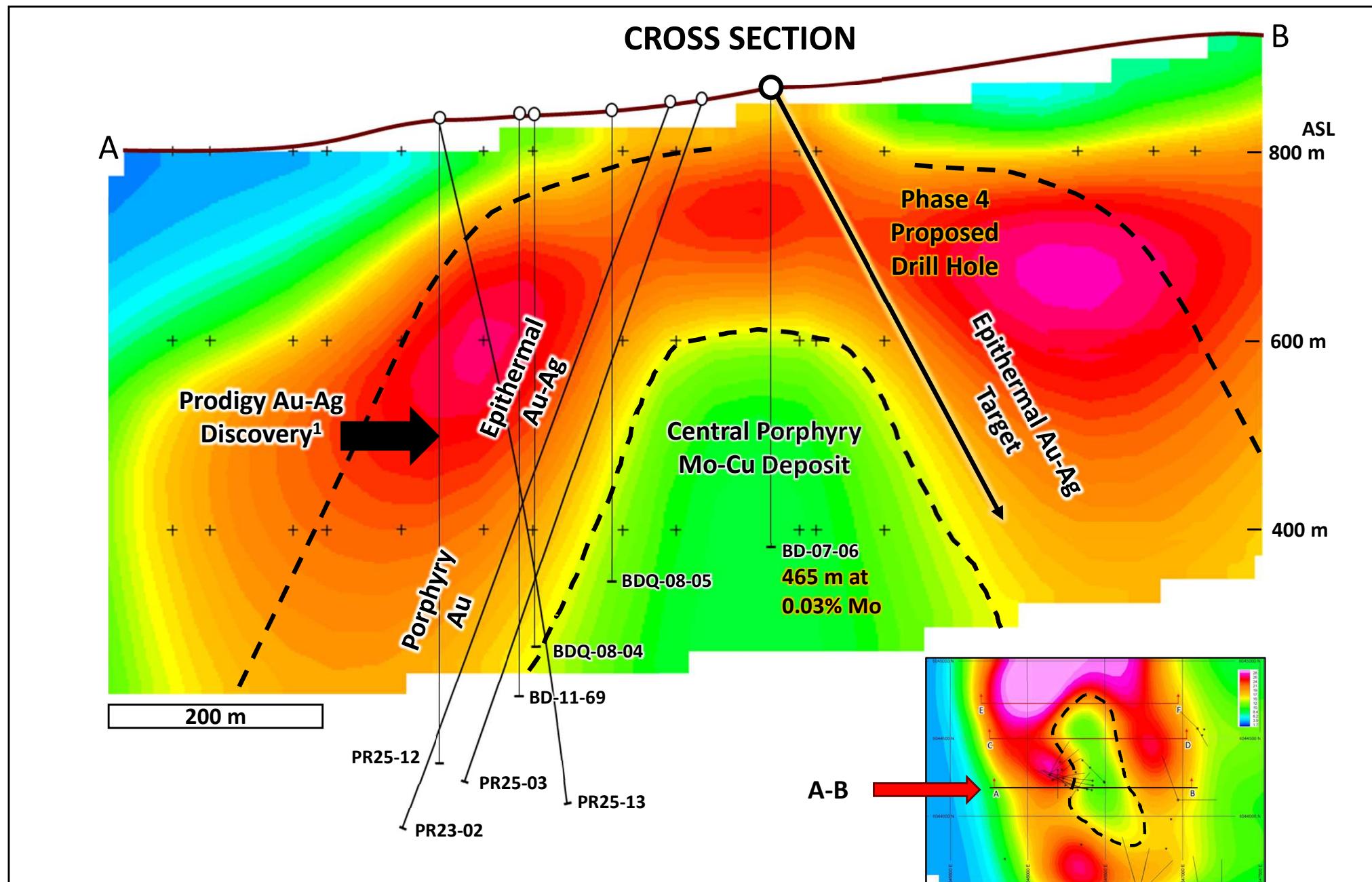
Gold and Silver Mineralization at Prodigy is Widespread and Open to Expansion

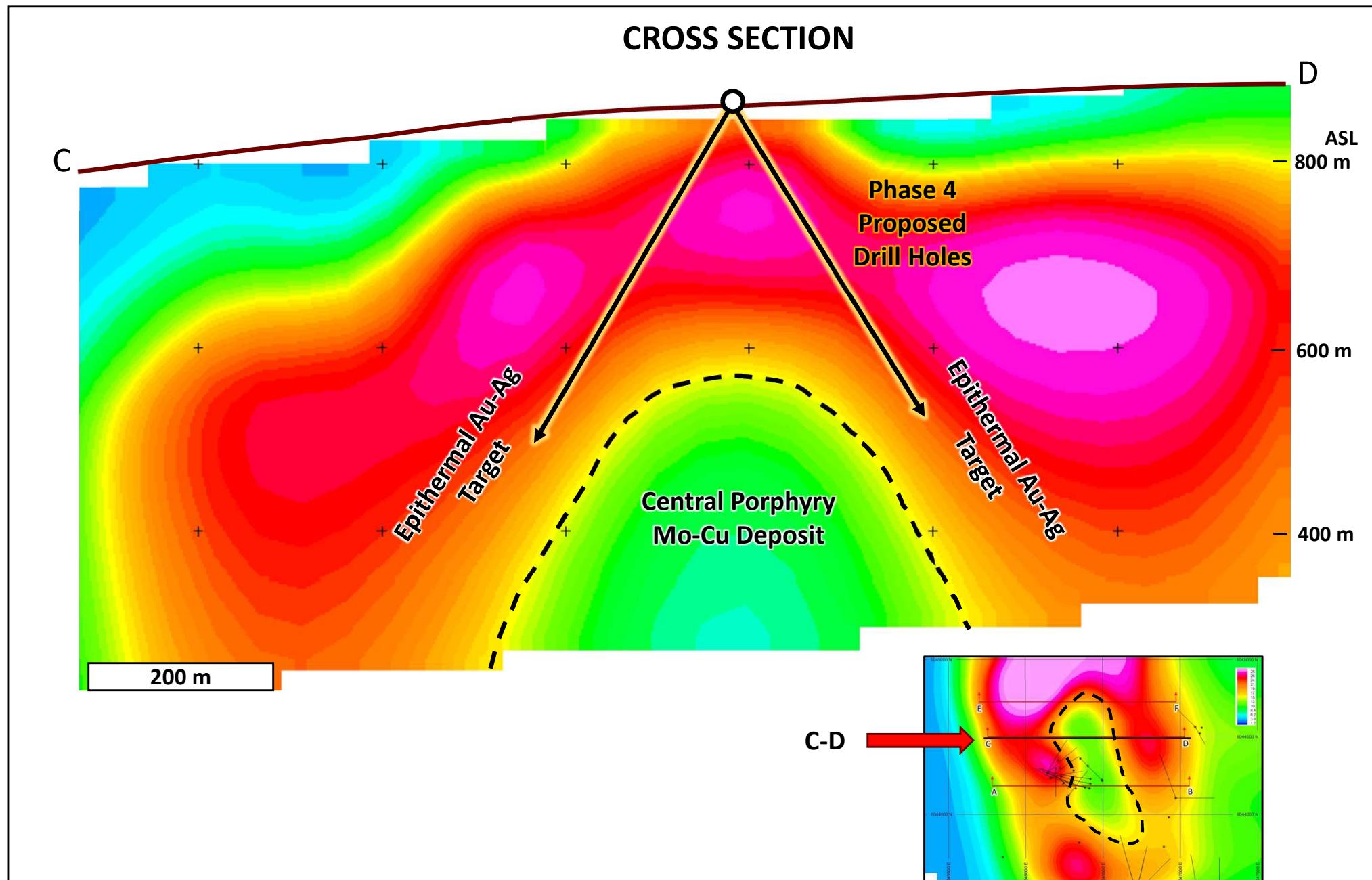


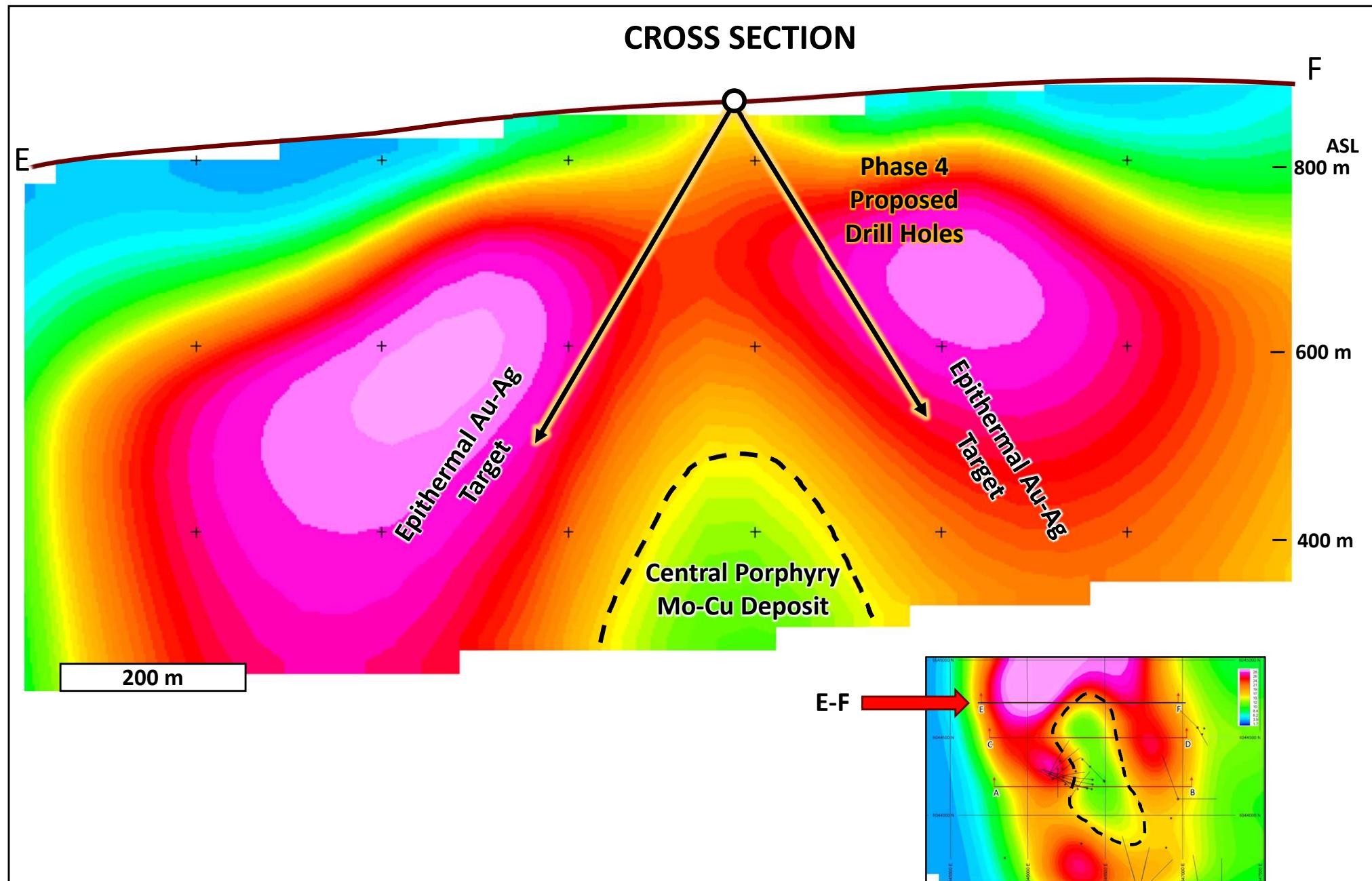
- Diamond drill hole PR25-13, the last hole of Phase 3, was drilled to test the west side of the northwest trending magnetic low feature referred to as the Prodigy “EYE”
- It intersected broad intervals of Au-Ag-Mo-Cu mineralized veins and breccia bodies from shallow depths representing a high to intermediate sulfidation epithermal mineral system
- Below this Epithermal Au-Ag-Mo-Cu system the hole cut a newly discovered Porphyry Au-Ag mineral system continuously over some 315 meters


Prodigy Exhibits Similarities in Mineralization Style, Alteration Assemblages and Age to the New Blackwater Au-Ag Mine in Central British Columbia

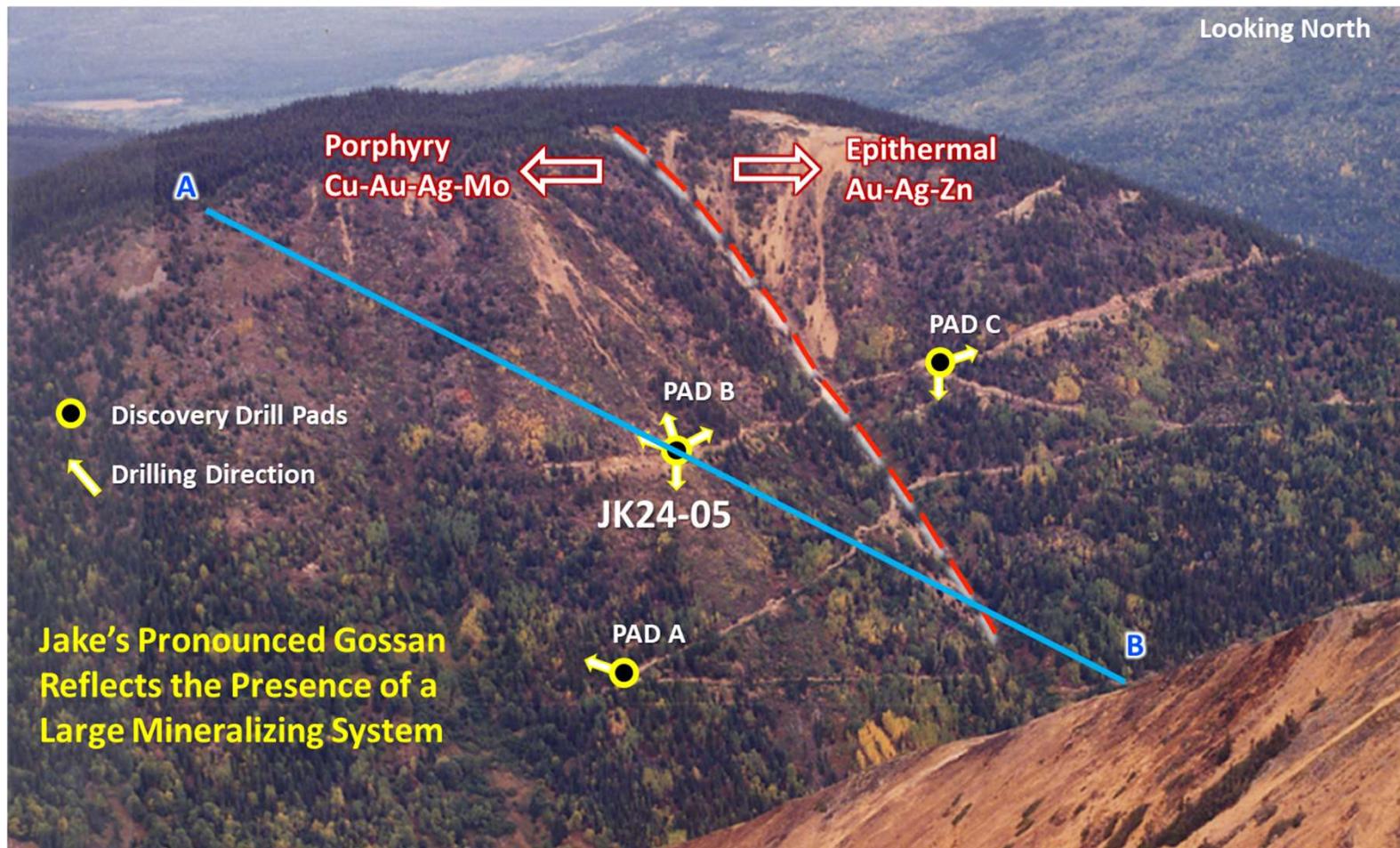
- The main Au mineralization stage at Blackwater, hosted by green sericite alteration, is dated at 65 ± 0.9 Ma, which is comparable to the 67 Ma age of the green sericite-hosted Epithermal Au-Ag-Cu-Mo mineralization at Prodigy.
- Results from the Re-Os dating at the University of Alberta indicate a Late Cretaceous age for both Epithermal Au-Ag (67 Ma), and Porphyry Au (68 Ma) mineralization stages at Prodigy.
- The coincident age ranges for both epithermal and porphyry mineralizing events at Prodigy indicate an **integrated porphyry-epithermal Au-Ag evolutionary continuum for the Prodigy Discovery**.

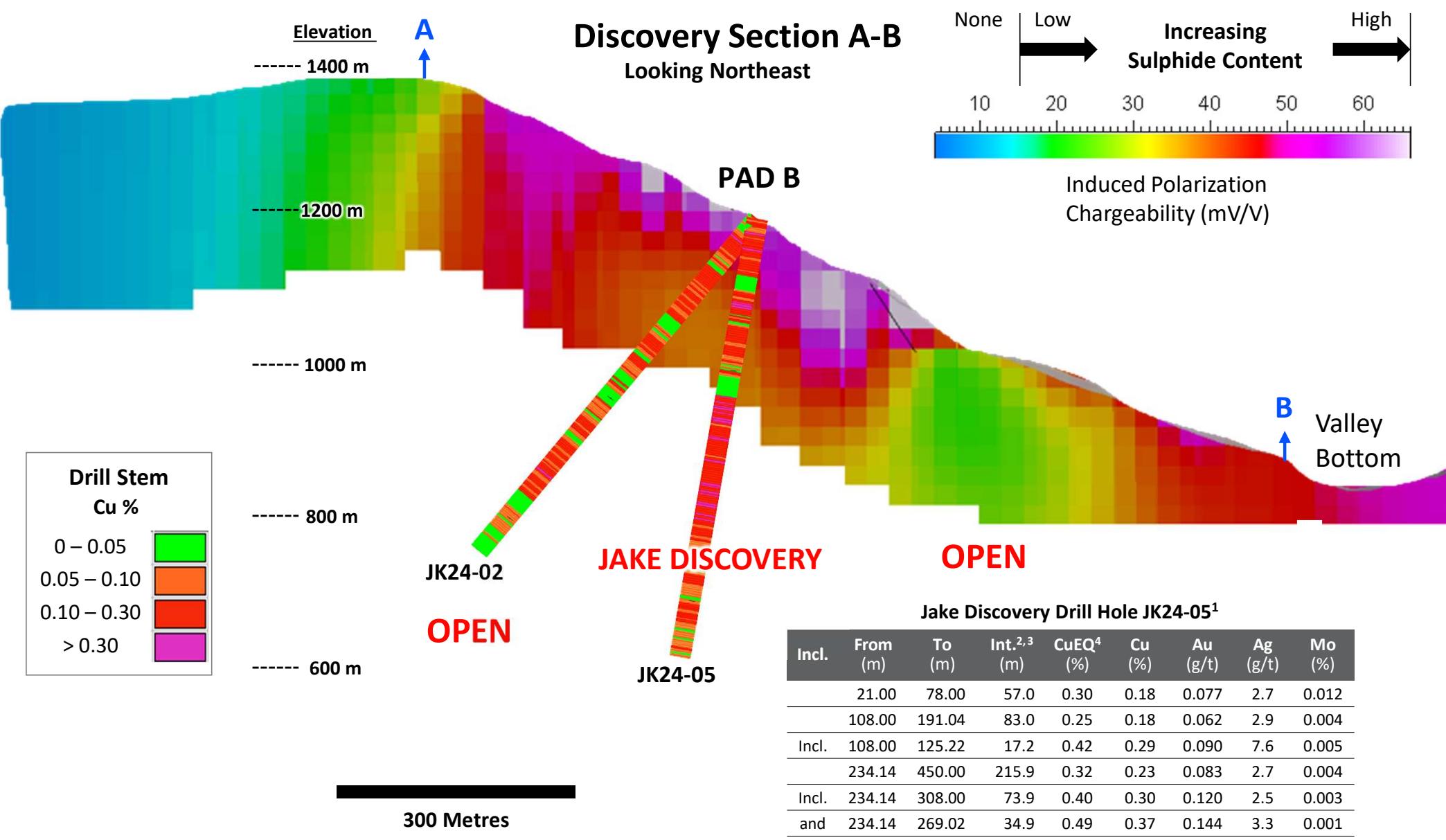

New IP Survey Defines Large Classic Porphyry **Sulphide System and Key Location of Prodigy Discovery within “Donut”**




IP Survey Defines the Geological Setting of Prodigy Au-Ag Discovery Within Large “Donut” Shaped Sulphide System

Note 1. See Appendix for Complete Prodigy Assays.



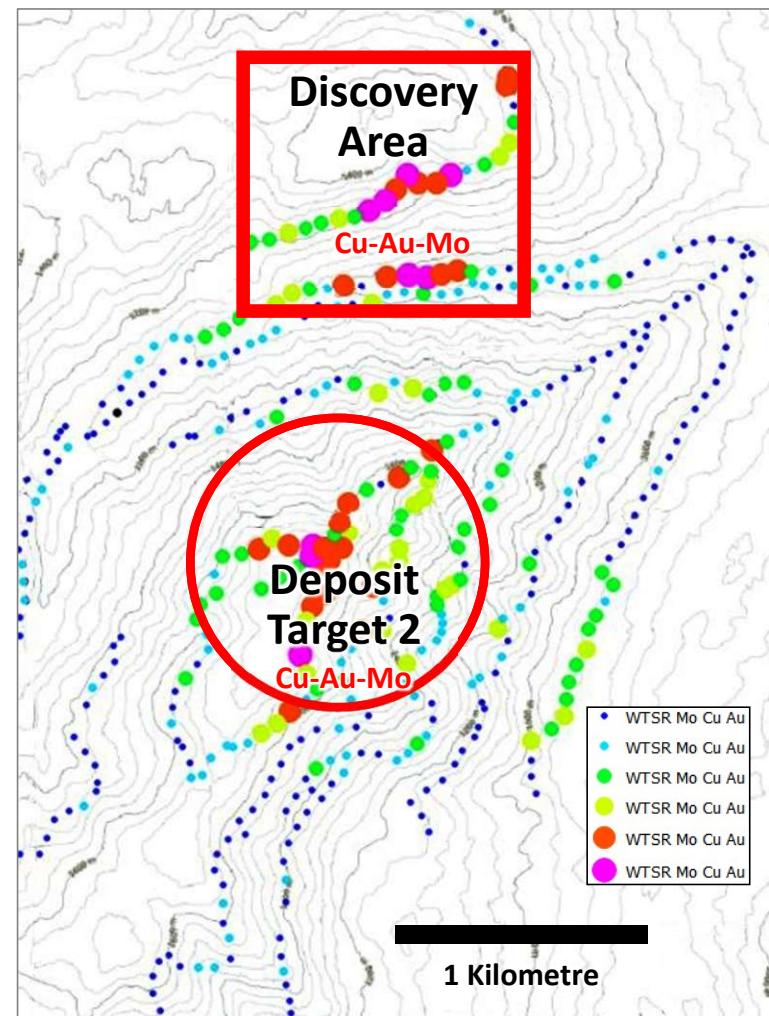


Jake – A New Porphyry Cu-Au-Ag Discovery

- Initial seven hole (3,418 meters), scout drilling program discovered a new Cu-Au-Ag porphyry system at Jake with hole JK24-05 the discovery hole at PAD B¹



Jake Discovery Copper-Gold Intercepts Focus Next Drill Programs Planned After Maestro Success



Note 1. See Appendices For Assay Results and CuEQ Methodology

100% of Potential New BC Porphyry Copper-Gold District Acquired Around Jake Discovery

Cu Mo Au Weighted Sums (WTSR) Soil Samples

Quartz Investment Summary

- Quartz is well-structured and backed by Canadian Mining Hall of Fame founding shareholder, a strong strategic investor and **35 years of proven discovery and transaction success** of the HDI team
- These experienced mine finders have made **two new and important high value gold-silver and copper deposit discoveries** in British Columbia: **Maestro** and **Jake**
- **Maestro:** Au-Ag lodes discovered at Prodigy within **extensive precious metals district**
- **Jake:** Porphyry Cu-Au-Ag discovery and acquisition of an entire **new porphyry copper-gold district**
- Both discoveries were **funded by the founder and a strategic partner** and have **high potential for important transactions** as drill delineation progresses
- **Multi-phase delineation drill programs on-going** at the Maestro Property. Jake next in pipeline, standing by for delineation after Maestro success
- **Experienced management, strong funding support, surging Au, Ag, and Cu prices, combined with important discoveries being drill delineated, all support Quartz to achieve its goal of Accelerated Wealth Creation**

Quartz Mountain Resources Inc.

Bob Dickinson (QZM Founder and Chairman), and Chairman of the Sutton Group (Strategic Partner)

**Contact us for
further information**

Bob Dickinson

Chairman

robertdickinson@hdimining.com

14th Floor, 1040 W. Georgia St., Vancouver,
BC V6E 4H1 Canada

Phone: 604-684-6365 Toll Free: 800-667-2114

Email: info@quartzmountainresources.com

Website: quartzmountainresources.com

HDI QUARTZ

Appendices

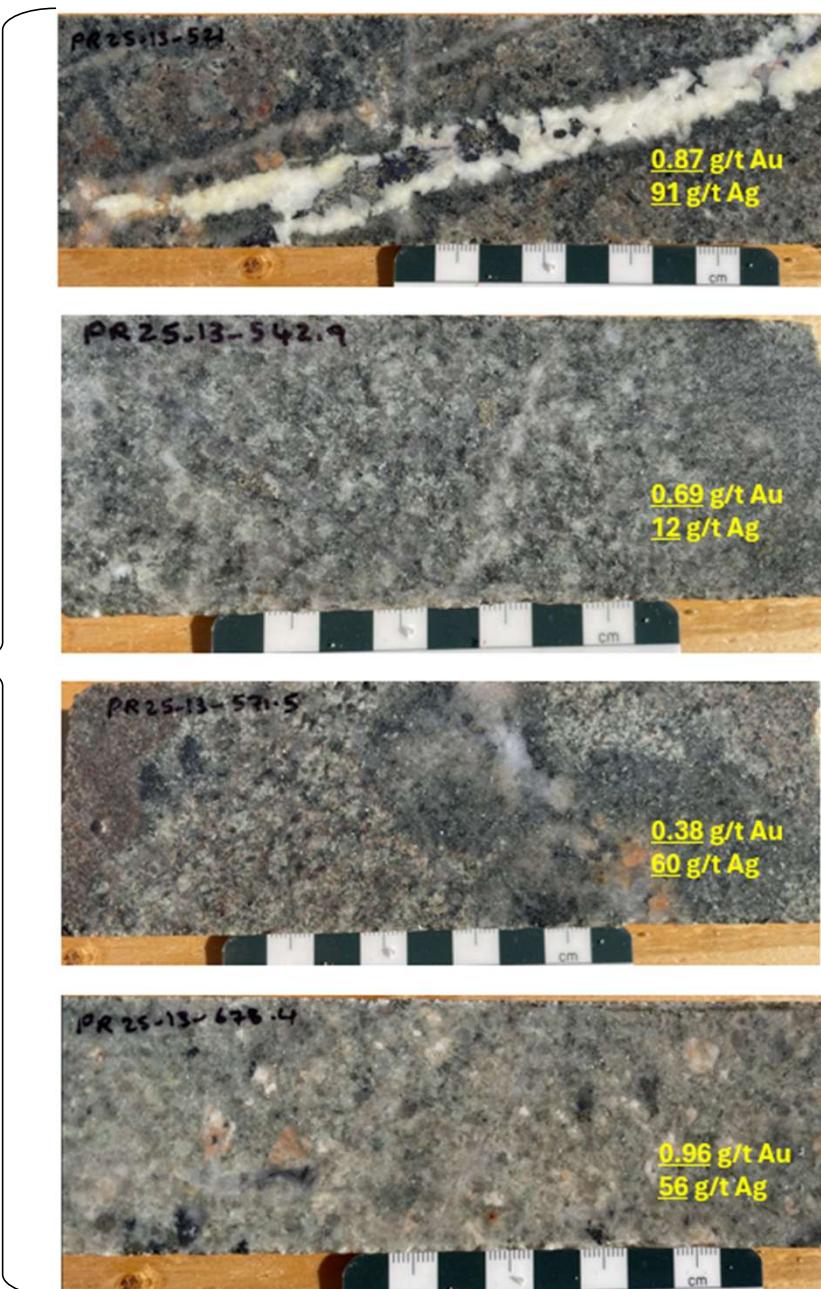
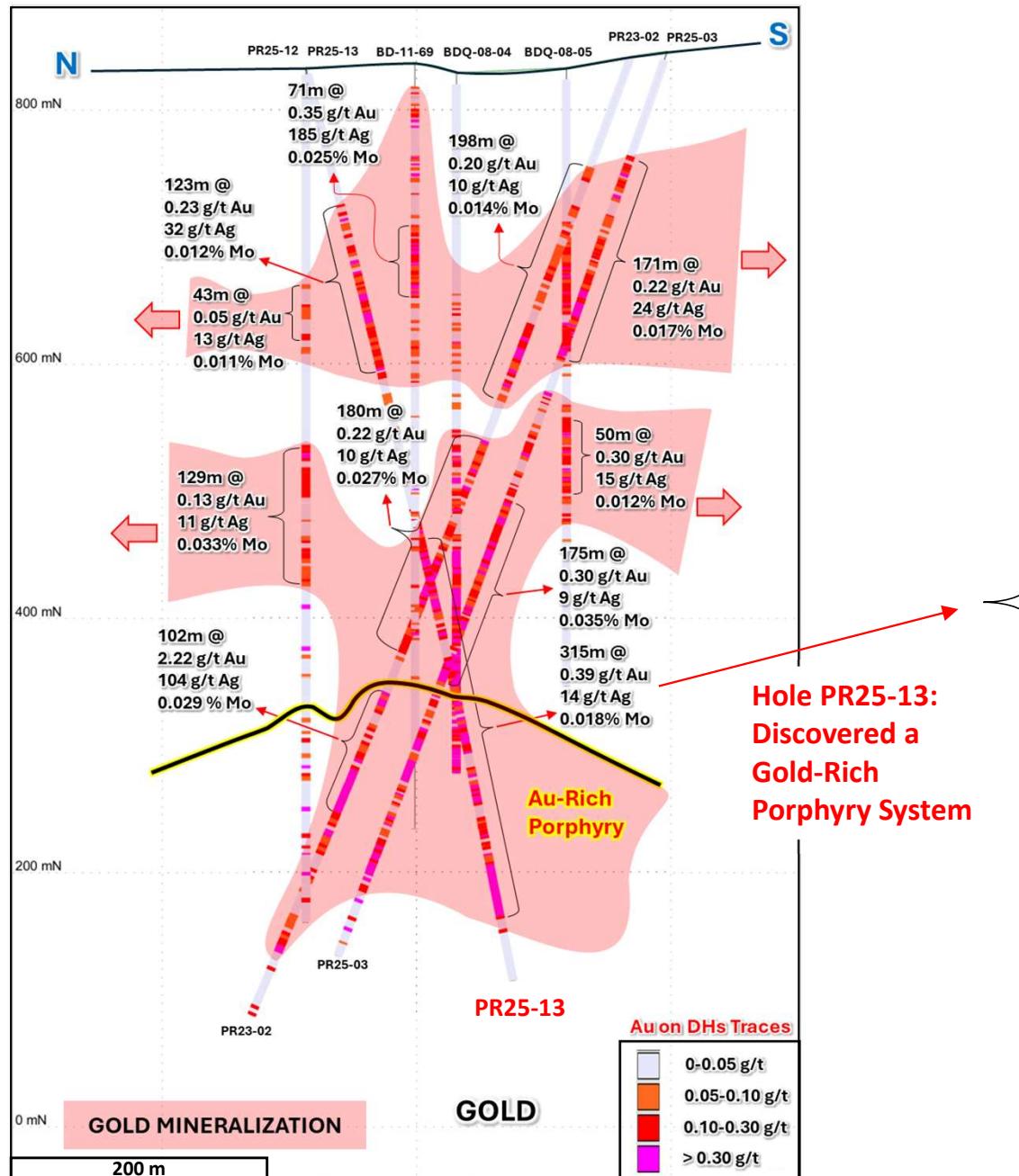
Phase 1 and 2 Drill Hole Results at Maestro's Prodigy Zone

Phase 1 and 2 Prodigy "EYE" Assay results										
Drilling Program	Drill Hole Number	Incl.	From (m)	To (m)	Int. ^{1,2,3} (m)	AuEQ ⁴ (g/t)	Au (g/t)	Ag (g/t)	Mo (%)	Cu (%)
Phase 1	PR23-01		51.0	252.0	201.0	0.53	0.18	18	0.010	0.05
		incl	51.0	96.0	45.0	0.74	0.24	28	0.015	0.05
		incl	153.0	240.0	87.0	0.62	0.25	19	0.007	0.07
			279.0	282.0	3.0	3.95	0.65	215	0.002	0.46
			375.0	393.0	18.0	0.54	0.09	1	0.065	0.03
	PR23-02		81.0	279.0	198.0	0.47	0.2	10	0.014	0.04
		incl	225.0	279.0	54.0	0.94	0.59	16	0.016	0.04
		incl	324.0	759.0	435.0	1.22	0.65	30	0.025	0.04
		and	324.0	675.0	351.0	1.47	0.78	36	0.029	0.05
		and	537.0	639.0	102.0	3.80	2.22	104	0.029	0.09
Phase 2	PR25-03	and	537.0	549.0	12.0	9.63	1.23	586	0.060	0.61
		and	603.0	639.0	36.0	6.93	5.73	87	0.013	0.05
			87.5	690.9	603.4	0.56	0.25	12	0.020	0.03
		incl	87.5	258.7	171.1	0.70	0.22	24	0.017	0.06
		and	87.5	123.0	35.5	0.93	0.18	41	0.013	0.12
		and	157.0	258.7	101.7	0.77	0.29	23	0.020	0.05
		and	200.0	258.7	58.7	0.93	0.41	25	0.025	0.04
		incl	365.6	541.0	175.4	0.66	0.3	9	0.035	0.03
		and	390.0	528.0	138.0	0.71	0.33	10	0.034	0.03
		and	456.0	484.5	28.5	1.02	0.51	11	0.055	0.04
	PR25-04	and	504.3	528.0	23.7	0.93	0.47	22	0.024	0.04
		incl	567.0	612.0	45.0	0.72	0.45	17	0.004	0.03
		incl	660.3	690.9	30.7	0.72	0.43	8	0.030	0.01
			16.6	99.0	82.4	0.56	0.08	15	0.032	0.07
		incl	63.0	99.0	36.0	0.79	0.12	26	0.031	0.12
			138.0	172.0	34.0	0.44	0.07	11	0.012	0.11
			259.0	742.0	483.0	0.49	0.17	8	0.030	0.03
		incl	270.0	311.7	41.7	0.60	0.16	24	0.014	0.04
PR25-05	PR25-04	incl	341.7	663.9	322.2	0.55	0.18	8	0.036	0.03
		and	341.7	378.0	36.3	0.64	0.21	21	0.017	0.05
		and	341.7	347.6	5.9	2.21	0.51	104	0.015	0.23
		and	393.0	480.0	87.0	0.70	0.26	13	0.033	0.06
		and	534.0	546.0	12.0	1.75	0.29	44	0.119	0.14
	PR25-05		225.0	671.1	446.1	0.51	0.18	5	0.037	0.03
		incl	323.0	660.0	337.0	0.60	0.23	6	0.042	0.03
		and	414.0	671.1	257.1	0.69	0.29	8	0.044	0.02
		and	414.0	561.0	147.0	0.85	0.33	8	0.062	0.03
		and	609.0	660.0	51.0	0.71	0.43	14	0.016	0.02
PR25-06 ¹	PR25-06 ¹		240.0	420.0	180.0	0.42	0.17	8	0.016	0.04
		incl	240.0	279.0	39.0	0.89	0.34	26	0.014	0.1
			480.0	643.0	163.0	0.37	0.06	2	0.045	0.01

Note 1. PR25-06 was wedged from PR23-02 and commenced coring at 240 meters downhole.

- Highlights of assay results from core holes comprising Phase 1 and 2 drill programs at the Prodigy gold-silver discovery on its Maestro Property.
- All holes returned broad intervals of precious and base metals mineralization, starting from a shallow depth.
- The results represent a successful start to delineation of a substantial new epithermal Au-Ag system at Maestro with drill intersections indicating high potential for both bulk tonnage and high-grade mineralization.
- The Prodigy Au-Ag system remains open, promising significant potential.

Phase 3 Drilling Continues Delineation of Maestro's Prodigy Zone

Phase 3 Prodigy "EYE" Assay Results ^A										
Drilling Program	Drill Hole Number	Incl.	From (m)	To (m)	Int. ^{1,2,3} (m)	AuEQ ⁴ (g/t)	Au (g/t)	Ag (g/t)	Mo (%)	Cu (%)
Phase 3	PR25-07	incl.	146.8	284.7	137.9	0.47	0.14	12	0.023	0.04
			231.0	252.0	21.0	0.97	0.34	38	0.015	0.05
			312.0	321.0	9.0	1.72	0.07	16	0.164	0.32
	PR25-08		69.0	195.0	126.0	0.80	0.09	45	0.012	0.06
			566.0	568.9	2.9	7.63	6.57	79	0.001	0.06
	PR25-09		81.0	114.0	33.0	0.29	0.06	12	0.006	0.03
			126.0	203.8	77.8	0.52	0.12	20	0.014	0.05
	PR25-10		68.0	84.7	16.8	0.92	0.11	21	0.020	0.30
			101.0	133.0	32.0	0.63	0.12	23	0.021	0.07
			190.2	282.0	91.8	0.43	0.02	2	0.038	0.11
	PR25-11	incl.	36.0	39.0	3.0	0.71	0.42	4	0.033	0.03
			69.0	72.0	3.0	0.61	0.13	22	0.020	0.06
			192.0	276.0	84.0	0.54	0.03	2	0.043	0.16
			201.0	207.0	6.0	0.86	0.12	6	0.008	0.44
			324.1	330.0	5.9	0.77	0.02	6	0.089	0.10
	PR25-12	incl.	153.0	429.0	276.0	0.40	0.08	8	0.023	0.06
			171.0	214.5	43.5	0.50	0.05	13	0.011	0.15
			297.0	426.0	129.0	0.52	0.13	11	0.033	0.04
			297.0	308.0	11.0	0.79	0.51	6	0.018	0.07
			423.0	426.0	3.0	6.64	0.49	400	0.060	0.63
			456.0	459.0	3.0	1.40	0.95	14	0.039	0.03
			549.0	552.0	3.0	2.17	0.89	94	0.002	0.08
			582.0	585.0	3.0	1.15	0.95	13	0.001	0.02
			122.0	245.3	123.3	0.79	0.23	32	0.012	0.07
	PR25-13	incl.	122.0	167.0	45.0	0.96	0.26	44	0.008	0.08
			312.9	315.0	2.1	3.11	1.62	25	0.010	0.79
			369.8	685.6	315.8	0.73	0.39	14	0.018	0.04
			369.8	462.8	93.1	1.00	0.54	9	0.050	0.03
		incl.	369.8	441.4	71.6	1.15	0.65	8	0.060	0.03
			393.0	441.4	48.4	1.45	0.88	10	0.066	0.03
			400.1	402.0	1.9	6.08	5.38	38	0.033	0.02
			477.1	555.0	77.9	0.74	0.38	21	0.009	0.04
			635.0	685.6	50.6	0.94	0.55	22	0.002	0.08

Historical Drill Results Near Prodigy "EYE"									
Drill Hole Number	Incl.	From (m)	To (m)	Int. ^{1,2,3} (m)	AuEQ ⁴ (g/t)	Au (g/t)	Ag (g/t)	Mo (%)	Cu (%)
BD-11-69	incl	35.0	54.2	19.2	1.32	0.25	72	0.012	0.08
		49.3	51.0	1.7	11.11	1.35	711	0.003	0.73
		134.1	205.2	71.1	3.07	0.35	185	0.025	0.22
		136.1	185.3	49.2	4.20	0.48	264	0.011	0.30
	and	142.5	148.8	6.3	22.06	1.94	1484	0.011	1.34
		180.0	183.3	3.3	13.56	0.60	921	0.007	1.17
		329.1	404.5	75.4	0.97	0.10	1	0.136	0.02
		445.8	450.8	5.0	1.24	0.75	16	0.041	0.03
BD-11-70	incl	47.4	55.2	7.8	0.59	0.03	9	0.016	0.25
		114.5	399.7	285.2	0.51	0.02	4	0.053	0.09
		173.8	338.5	164.7	0.49	0.02	4	0.043	0.11
		195.5	196.1	0.6	5.25	0.48	202	0.012	1.57
BDQ-08-02	incl	21.0	81.0	60.0	0.42	0.07	9	0.024	0.07
		197.0	403.0	206.0	0.96	0.10	46	0.035	0.07
		197.0	213.0	16.0	8.48	1.09	551	0.023	0.37
		203.0	209.0	6.0	20.46	2.62	1350	0.018	0.86
BDQ-08-03	incl	9.0	352.7	343.7	0.54	0.13	13	0.030	0.06
		9.0	167.0	158.0	0.67	0.11	25	0.022	0.08
		67.0	167.0	100.0	0.80	0.16	35	0.021	0.07
		67.0	117.0	50.0	1.09	0.22	50	0.019	0.10
		79.0	101.0	22.0	1.86	0.34	95	0.016	0.19
BDQ-08-04	incl	293.0	551.3	258.3	0.81	0.43	13	0.026	0.04
		373.0	497.0	124.0	1.16	0.64	19	0.038	0.05
		373.0	463.0	90.0	1.30	0.71	23	0.037	0.06
BDQ-08-05	incl	119.0	223.0	104.0	0.47	0.17	13	0.014	0.04
		141.0	223.0	82.0	0.52	0.20	15	0.015	0.03
		275.0	325.0	50.0	0.59	0.30	15	0.012	0.04

- Six historical core holes drilled in the period 2007-2011 by a past operator in the Prodigy area, intersected gold, silver, molybdenum and copper mineralization.
- Dr. Farhad Bouzari, at Mineral Deposit Research Unit (MDRU) of University of British Columbia (UBC), scientifically re-logged these historical core holes and all Phase 1, 2 and 3 drill holes.
- These detailed studies are assisting to focus the successful delineation drilling of Prodigy and the exploration for other deposit target areas.
- Holes to date have intersected Au-Ag veins occurring within a bulk tonnage style disseminated Au-Ag system all hosted within Mo-Cu porphyry mineralization

Classic Porphyry Au Intersections Immediately Below Classic Epithermal Au-Ag Intersections at Prodigy

Porphyry Au-Ag Mineralization at Prodigy is Highly Continuous

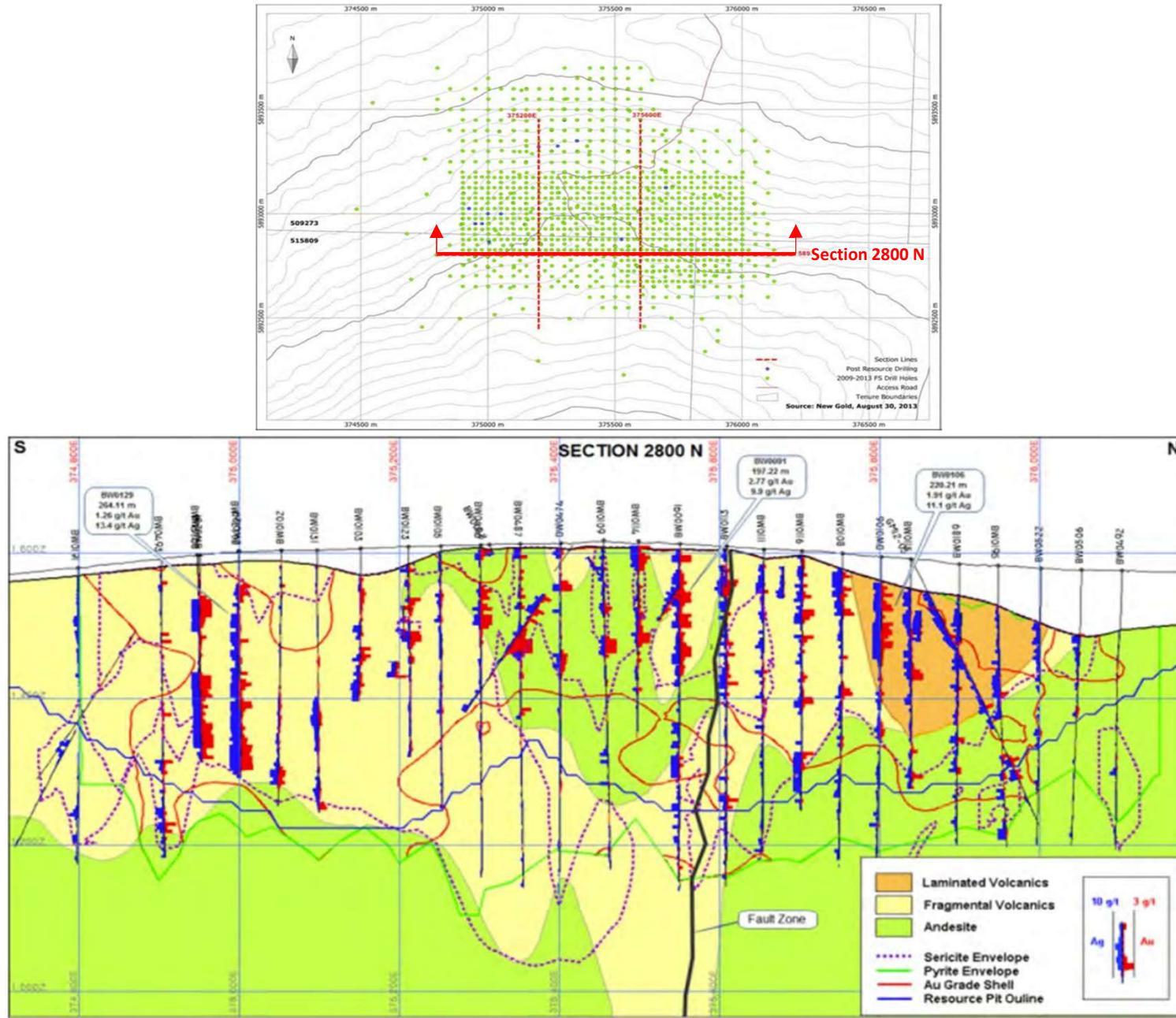
Hole ID	From m	Length m	Au g/t	Ag g/t	Mo ppm	AuEQ ^A g/t
PR25-13	122.03	2.5	2.080	193.0	76	4.78
PR25-13	124.53	1.47	0.031	10.5	43	0.23
PR25-13	126	3	0.057	5.2	35	0.30
PR25-13	129	3	0.054	14.0	293	0.55
PR25-13	132	3	0.001	0.3	31	0.04
PR25-13	135	3	0.147	22.9	63	0.58
PR25-13	138	3	0.040	10.5	57	0.27
PR25-13	141	3	0.027	3.4	56	0.14
PR25-13	144	3	0.163	22.5	50	0.68
PR25-13	147	3	0.255	207.0	86	3.11
PR25-13	150	3	0.075	20.6	20	0.39
PR25-13	153	3	0.045	4.4	43	0.14
PR25-13	156	3	1.025	33.4	71	1.53
PR25-13	159	3	0.056	1.5	86	0.16
PR25-13	162	3	0.025	1.1	56	0.12
PR25-13	165	2	0.331	229.0	145	3.50
PR25-13	167	2.33	0.196	2.3	120	0.32
PR25-13	169.33	2.2	0.083	1.6	149	0.20
PR25-13	171.53	2.47	0.062	1.4	129	0.19
PR25-13	174	1.94	0.105	1.5	41	0.15
PR25-13	175.94	1.8	0.085	1.0	87	0.17
PR25-13	177.74	2.26	0.115	3.3	63	0.20
PR25-13	180	3	0.071	1.9	42	0.31
PR25-13	183	3	0.443	7.4	61	0.61
PR25-13	186	3	0.971	68.5	55	2.07
PR25-13	189	3	0.298	21.0	148	1.12
PR25-13	192	2.54	0.147	2.4	50	0.29
PR25-13	194.54	2.46	0.070	2.9	338	0.41
PR25-13	197	1.31	0.192	3.3	71	0.30
PR25-13	198.31	2.69	0.357	3.9	87	0.49
PR25-13	201	3	0.331	4.0	143	0.51
PR25-13	204	3	0.380	8.2	80	0.55
PR25-13	207	3	0.093	7.6	84	0.29
PR25-13	210	2.36	0.151	2.9	523	0.53
PR25-13	212.36	2.18	0.285	5.4	125	0.45
PR25-13	214.54	1.46	0.135	7.2	274	0.41
PR25-13	216	3	0.249	10.7	212	0.58
PR25-13	219	3	0.083	3.1	174	0.25
PR25-13	222	3	0.124	10.0	115	0.34
PR25-13	225	3	0.083	4.0	164	0.24
PR25-13	228	3	0.147	71.7	113	1.20
PR25-13	231	3	0.135	8.5	272	0.44
PR25-13	234	3	0.078	13.7	170	0.41
PR25-13	237	3	0.121	4.9	175	0.31
PR25-13	240	3	0.121	62.6	92	1.00
PR25-13	243	2.31	0.400	420.0	107	6.13

Hole ID	From m	Length m	Au g/t	Ag g/t	Mo ppm	AuEQ ^A g/t
PR25-13	369.78	2.22	0.220	5.1	391	0.62
PR25-13	372	3	0.122	1.4	452	0.42
PR25-13	375	3	0.322	2.5	270	0.53
PR25-13	378	3	0.096	1.6	1650	1.13
PR25-13	381	3	0.256	7.7	204	0.52
PR25-13	384	3	0.178	5.7	336	0.51
PR25-13	387	3	0.126	1.1	258	0.31
PR25-13	390	3	0.157	1.3	190	0.31
PR25-13	393	3	0.491	5.2	332	0.80
PR25-13	396	1.98	0.264	5.2	731	0.81
PR25-13	397.98	2.13	0.365	12.4	160	0.68
PR25-13	400.11	1.89	5.380	38.4	329	6.08
PR25-13	402	1.91	0.600	5.7	1230	1.43
PR25-13	403.91	2.09	0.216	1.1	4140	2.75
PR25-13	406	1.57	0.980	6.9	3530	3.22
PR25-13	407.57	1.53	0.126	0.7	256	0.30
PR25-13	409.1	2.9	0.191	6.8	392	0.56
PR25-13	412	3	1.240	7.6	553	1.68
PR25-13	415	2	1.020	24.2	622	1.87
PR25-13	417	3	0.209	14.4	160	0.57
PR25-13	420	2.8	0.923	12.7	291	1.31
PR25-13	422.8	2.97	0.171	6.9	426	0.55
PR25-13	425.77	2.23	0.356	3.2	525	0.72
PR25-13	428	1.71	0.067	3.0	120	0.20
PR25-13	429.71	2.61	2.910	34.1	192	3.49
PR25-13	432.32	2.68	1.075	6.8	411	1.41
PR25-13	435	3	1.295	8.5	283	1.58
PR25-13	438	2.07	0.231	1.4	373	0.48
PR25-13	440.07	1.3	0.336	11.7	458	0.83
PR25-13	441.37	2.63	0.075	13.1	168	0.42
PR25-13	444	3	0.058	4.2	286	0.32
PR25-13	447	3	0.034	3.4	279	0.26
PR25-13	450	3	0.254	3.3	168	0.41
PR25-13	453	1.83	0.049	1.8	187	0.20
PR25-13	454.83	2.17	0.251	8.2	81	0.43
PR25-13	457	3	0.374	46.0	96	1.11
PR25-13	460	2.84	0.166	18.4	53	0.50
PR25-13	462.84	2.16	0.027	4.4	110	0.17
PR25-13	465	3	0.004	0.3	78	0.08
PR25-13	468	3	0.009	2.2	43	0.07
PR25-13	471	3	0.002	0.1	107	0.07
PR25-13	474	3.06	0.017	1.1	51	0.07
PR25-13	477.06	2.94	0.215	31.9	70	0.72
PR25-13	480	3	0.717	49.0	250	1.57
PR25-13	483	3	0.995	25.5	122	1.42
PR25-13	486	2.44	0.345	24.2	184	0.83
PR25-13	488.44	2.56	0.103	14.4	133	0.40
PR25-13	491	2.62	0.134	2.6	172	0.28

Hole ID	From m	Length m	Au g/t	Ag g/t	Mo ppm	AuEQ ^A g/t
PR25-13	493.62	2.51	0.057	4.2	139	0.20
PR25-13	496.13	1.87	0.248	24.6	38	0.63
PR25-13	498	3	0.592	66.0	91	1.58
PR25-13	501	3.14	0.057	11.5	37	0.24
PR25-13	504.14	2.86	0.079	3.5	19	0.15
PR25-13	507	2	0.003	2.3	67	0.08
PR25-13	509	1.87	0.020	1.8	23	0.06
PR25-13	510.87	1.68	0.165	3.5	47	0.24
PR25-13	512.55	1.78	0.604	42.2	4	1.18
PR25-13	514.33	2.67	0.490	8.2	102	0.66
PR25-13	517	3	0.090	11.4	101	0.33
PR25-13	520	3	0.872	90.8	74	2.21
PR25-13	523	2.46	0.040	6.9	11	0.16
PR25-13	525.46	2.71	1.190	56.2	61	2.07
PR25-13	528.17	2.83	0.094	5.7	50	0.21
PR25-13	531	3	0.526	9.6	19	0.67
PR25-13	534	2	0.152	5.0	30	0.24
PR25-13	536	2.15	0.146	9.9	99	0.35
PR25-13	538.15	2.85	0.839	41.4	81	1.54
PR25-13	541	3	0.689	12.3	59	0.93
PR25-13	544	3	0.636	7.5	27	0.87
PR25-13	547	3	0.107	3.8	55	0.20
PR25-13	550	3.04	0.217	6.2	270	0.48
PR25-13	553.04	1.96	0.557	4.5	29	0.63
PR25-13	555	2	0.002	0.4	3	0.01
PR25-13	557	3	0.001	0.6	3	0.02
PR25-13	560	3	0.002	0.4	4	0.02
PR25-13	563	2.76	0.002	0.2	3	0.01
PR25-13	565.76	2.24	0.138	3.8	35	0.28
PR25-13	568	3	0.077	9.0	34	0.32
PR25-13	571	3	0.380	59.9	124	1.36
PR25-13	574	2.43	0.006	3.6	46	0.09
PR25-13	576.43	3.51	0.082	2.5	27	0.16
PR25-13	579.94	2.87	0.524	10.9	2	0.76
PR25-13	582.81	2.19	0.147	4.6	34	0.39
PR25-13	585	2	2.125	60.3	268	2.35
PR25-13	587	2	0.196	6.0	10	0.32
PR25-13	589	2.65	0.360	7.5	16	0.50
PR25-13	591.65	2.35	0.664	5.8	23	0.80
PR25-13	594	2.46	0.246	7.2	11	0.39
PR25-13	596.46	2.54	0.033	4.3	8	0.11
PR25-13	599	3	0.005	1.5	30	0.05
PR25-13	602	2	0.035	0.6	4	0.05
PR25-13	604	2	0.019	0.8	3	0.03
PR25-13	606	3	0.149	18.1	121	0.52
PR25-13	609	2	0.097	1.1	18	0.13
PR25-13	611	2	0.212	1.5	4	0.24
PR25-13	613	2.41	0.184	7.1	3	0.29
PR25-13	615.41	2.59	0.172	67.3	7	1.08
PR25-13	618	1.9	0.117	17.0	47	0.41
PR25-13	619.9	1.6	0.658	25.5	2	1.03
PR25-13	621.5	1.83	0.177	6.9	4	0.31
PR25-13	623.33	2.67	0.021	0.6	7	0.04
PR25-13	626	3	0.124	30.1	50	0.58
PR25-13	629	3	0.271	2.0	13	0.34

Note A. See Note 4^a in Appendices for AuEQ methodology

- **PR25-03** at 584 m - Quartz monzonite with remnants of pink K-feldspar overprinted by strong pervasive coarse green sericite alteration with disseminated pyrite and trace tetrahedrite, cut by quartz-ankerite vein with massive coarse pyrite.
- This sample represents **Porphyry Au-Ag mineralization** and grades **0.64 g/t Au and 84 g/t Ag** (from a 2 m sample interval).


- **PR25-05** at 623 m - Quartz-monzonite with K-silicate alteration, overprinted by green sericite, and cut by quartz-pyrite veins.
- This sample represents **Porphyry Au-Ag mineralization** and grades **0.92 g/t Au and 6 g/t Ag** (from a 2.8 m sample interval).

- **PR25-08** at 165 m - Andesite with green sericite alteration cut by high-sulfidation type quartz-ankerite veins with coarse tetrahedrite, pyrite, and chalcopyrite.
- This sample represents **Epithermal Au-Ag mineralization**, starting at shallow depths, and grades **0.29 g/t Au and 229 g/t Ag** (from a 3 m sample interval).

Abbreviations: py=pyrite, cp=chalcopyrite, tet=tetrahedrite, qtz=quartz, ank=ankerite, Kspar=K-feldspar, bio=biotite, ser=sericite.

Distribution of Au and Ag at Blackwater Mine Operated by Artemis Gold Inc. is Variable

Blackwater Gold Mine
NI 43-101 Technical
Report on 2024
Expansion Study -
Artemis Gold

- a) Width reported are drill widths, such that true thicknesses are unknown.
- b) All assay intervals represent length-weighted averages.
- c) Some figures may not sum exactly due to rounding.
- d) Gold equivalent (AuEQ) and silver equivalent (AgEQ) calculations use metal prices of: Au US\$1,800.00/oz, Ag US\$22.00/oz, Mo US\$17.00/lb and Cu US\$4.00/lb, and conceptual recoveries of: Au 80%, Ag 80%, Mo 75%, and Cu 75%. Conversion of metals to an equivalent gold grade based on these metal prices is relative to the gold price or silver price per unit mass factored by conceptual recoveries for those metals normalized to the conceptualized gold or silver recovery. The metal equivalencies for each metal are added to the gold grade or silver grade. The general formulas are:
 - a) Gold equivalent (AuEQ g/t) = Au g/t + (Ag g/t * (Ag recovery / Au recovery) * (Ag \$ per oz./ Au \$ per oz.) + (Cu % * (Cu recovery / Au recovery) * (Cu \$ per lb. * 22.0462 /Au \$ per oz. / 31.10348)) + (Mo % * (Mo recovery / 100) * (Mo \$ per lb. * 22.0462 /Au \$ per oz. / 31.10348))
 - b) Silver equivalent (AgEQ g/t) = Ag g/t + (Au g/t * (Au recovery /Ag recovery) * (Au \$ per oz./ Ag \$ per oz.)) + (Cu % * (Cu recovery /Ag recovery) * (Cu \$ per lb. * 22.0462) / (Ag \$ per oz. / 31.10348)) + (Mo % * (Mo recovery /Ag recovery) * (Mo \$ per lb. * 22.0462) / (Ag \$ per oz. / 31.10348))

Drill Hole JK24-05 Discovers New BC Porphyry Copper-Gold-Silver System at Jake Project

All Assay Results from Jake Discovery Drill Program¹

Drill Hole	Incl.	From (m)	To (m)	Int. ^{1,2,3} (m)	CuEQ ⁴ (%)	Cu (%)	Au (g/t)	Ag (g/t)	Mo (%)
JK24-01		415.00	444.62	29.62	0.15	0.11	0.036	1.1	0.003
JK24-02		36.00	74.00	38.00	0.29	0.18	0.107	1.6	0.008
JK24-02		90.00	169.94	79.94	0.23	0.14	0.055	1.6	0.009
JK24-02		204.54	226.07	21.53	0.23	0.15	0.041	2.1	0.009
JK24-02		236.05	260.10	24.05	0.18	0.13	0.040	1.1	0.004
JK24-02		339.00	360.60	21.60	0.21	0.14	0.073	1.8	0.002
JK24-02		378.00	411.00	33.00	0.20	0.15	0.057	1.8	0.001
JK24-02		418.00	464.00	46.00	0.21	0.16	0.043	1.7	0.002
JK24-03		54.00	86.97	32.97	0.20	0.13	0.048	1.1	0.007
JK24-03		109.23	261.00	151.77	0.21	0.15	0.055	1.7	0.003
JK24-03	Incl.	109.23	162.00	52.77	0.26	0.18	0.070	1.2	0.006
JK24-03	Incl.	135.00	150.00	15.00	0.48	0.34	0.133	1.9	0.010
JK24-03	Incl.	245.00	261.00	16.00	0.24	0.17	0.064	2.8	0.002
JK24-04		12.00	44.05	32.05	0.28	0.17	0.058	4.5	0.010
JK24-04		69.00	118.85	49.85	0.31	0.18	0.113	7.0	0.002
JK24-04	Incl.	69.00	87.41	18.41	0.40	0.23	0.132	11.0	0.002
JK24-05		21.00	78.00	57.00	0.30	0.18	0.077	2.7	0.012
JK24-05		108.00	191.04	83.04	0.25	0.18	0.062	2.9	0.004
JK24-05	Incl.	108.00	125.22	17.22	0.42	0.29	0.090	7.6	0.005
JK24-05		234.14	450.00	215.86	0.32	0.23	0.083	2.7	0.004
JK24-05	Incl.	234.14	308.00	73.86	0.40	0.30	0.120	2.5	0.003
JK24-05	and	234.14	269.02	34.88	0.49	0.37	0.144	3.3	0.001
JK24-05	Incl.	347.00	395.57	48.57	0.39	0.29	0.093	2.9	0.006
JK24-06		37.31	60.00	22.69	0.15	0.02	0.108	6.6	0.002
JK24-06		138.00	238.94	100.94	0.25	0.12	0.151	4.1	0.001
JK24-06	Incl.	140.00	159.00	19.00	0.36	0.14	0.275	5.8	0.001
JK24-06		165.00	183.00	18.00	0.31	0.14	0.159	7.7	0.001
JK24-07		151.01	153.80	2.79	0.68	0.08	0.684	19.2	0.002
JK24-07		166.18	178.19	12.01	0.23	0.14	0.080	4.4	0.002
JK24-07		181.32	196.59	15.27	0.35	0.15	0.199	8.1	0.002
JK24-07		211.42	229.91	18.49	0.19	0.11	0.083	1.0	0.005
JK24-07		243.89	363.00	119.11	0.17	0.08	0.096	2.8	0.002
JK24-07	Incl.	344.00	357.44	13.44	0.34	0.19	0.125	6.6	0.005
JK24-07		381.00	384.00	3.00	0.21	0.05	0.172	6.5	0.000
JK24-07		408.00	426.00	18.00	0.22	0.05	0.192	5.8	0.000
JK24-07		434.38	439.00	4.62	0.73	0.22	0.517	23.3	0.000

Note 1. See footnotes and note 4 for CuEQ methodology.

quartzmountainresources.com | TSXV: QZM | OTCQX: QZMRF

Footnotes

- Widths reported are drill widths, such that true thicknesses are unknown.
- All assay intervals represent length-weighted averages.
- Some figures may not sum exactly due to rounding.
- Copper equivalent (CuEQ) calculations use metal prices of: Cu US\$4.00/lb, Au US\$2000/oz., Ag US\$25/oz, and Mo US\$15.00/lb, and conceptual recoveries of: Cu 85%, Au 75%, Ag 70% and Mo 82%. Conversion of metals to an equivalent copper grade based on these metal prices is relative to the copper price per unit mass factored by conceptual recoveries for those metals normalized to the conceptualized copper recovery. The metal equivalencies for each metal are added to the copper grade. The general formula for this is: CuEQ% = Cu% + ((Au g/t * (Au recovery / Cu recovery) * (Au \$ per oz./31.1034768 / Cu \$ per lb. * 22.04623)) + ((Ag g/t * (Ag recovery / Cu recovery) * (Ag \$ per oz. / 31.1034768 / Cu \$ per lb. * 22.04623)) + ((Mo% * (Mo recovery / Cu recovery) * (Mo \$ per lb.) / Cu \$ per lb.))).